

OBG | There's a way

February 5, 2016

### Mr. John Osolin

Remedial Project Manager Emergency and Remedial Response Division United States Environmental Protection Agency – Region 2 290 Broadway, 19<sup>th</sup> Floor New York, NY 10007-1866

### Mr. Raymond Souweha

Case Manager
New Jersey Department of Environmental Protection
401 E. State Street
Mailcode 401-05F
P.O. Box 420
Trenton, NJ 08625-0420

RE: 2015 Annual Groundwater Monitoring Report
Evor Phillips Leasing Company Superfund Site
Old Bridge Township, Middlesex County, New Jersey (**Program Interest #G000004877, EPA ID #NJD980654222**)

FILE: 19726 / 51308

Dear Mr. Osolin and Mr. Souweha:

On behalf of the Evor Phillips Leasing Company Superfund Site Settling Defendants (Group), O'Brien & Gere has prepared this 2015 Annual Groundwater Monitoring Report for the Evor Phillips Leasing Company (EPLC) Superfund Site (Site) in Old Bridge, New Jersey. The annual groundwater monitoring event was completed in March 2015, in accordance with United States Environmental Protection Agency (EPA) and New Jersey Department of Environmental Protection (NJDEP) comments received on January 21, 2015 regarding the Injection Event #1 Post-Injection Monitoring Report (submitted on November 21, 2014), and the Group's responses to those comments submitted to EPA/NJDEP on February 19, 2015. A Site Location Map is provided as Figure 1, and a Site Plan with well locations is provided as Figure 2.

The 2015 annual groundwater monitoring event was completed in conjunction with the baseline groundwater monitoring event for the second round of in-situ chemical oxidation (ISCO) injections. The locations of the ISCO treatment areas are shown on Figure 3.

The following sections of this letter present the details of the groundwater sampling event, including groundwater sampling activities and results.





### **GROUNDWATER SAMPLING ACTIVITIES**

In March 2015, a total of thirty (30) monitoring wells were sampled consistent with the 2014 annual monitoring event. A list of wells sampled and their corresponding screened intervals is included as **Table 1**. Wells were sampled for VOCs via USEPA Method 8260B.

Monitoring wells were sampled using low-flow purge methods in accordance with the approved Remedial Design Report (RDR) /Remedial Action Work Plan (RAWP) and the NJDEP Field Sampling Procedures Manual (FSPM). Purge water was containerized on site in 55-gallon steel drums. Water-level measurements were also collected from the sampled wells, and groundwater elevation data are included in **Table 2**. Groundwater elevations for the shallow aquifer are depicted in **Figure 4**.

In accordance with the approved RDR/RAWP, selected wells were also sampled for dissolved iron/chromium and total chromium/sodium via USEPA Method 6010C, total dissolved solids (TDS) via USEPA Method SM 2540C, and sulfate via USEPA Method 300.0. These samples were collected at the following wells based on proximity to the ISCO treatment areas (refer to Figure 3):

- ISCO treatment area wells (10): ISCO-MW-1 through ISCO-MW-3, ISCO-MW-5 through ISCO-MW-9, PZ-1S, IW1-BT-2
- ISCO downgradient wells (3): ISCO-MW-4, MW-14S (two sample intervals), MW-10S
- ISCO upgradient wells (3): MW-5I, IW1-DR-1, MW-11I

The analytical results for the March 2015 annual/baseline monitoring event are presented in **Table 3**, including results for quality assurance/control (QA/QC) samples (collected in accordance with the approved RDR/RAWP).

Groundwater data were validated in accordance with the approved RDR/RAWP. Data validation results are included as **Attachment 3**.

### **GROUNDWATER SAMPLING RESULTS**

### **Groundwater Flow**

Consistent with previous groundwater monitoring, shallower portions of the local aquifer are monitored via the "S" wells and the "I" wells. The deeper portions of the local aquifer are monitored via the "D" wells. Six wells (ISCO-MW-2, ISCO-MW-3, ISCO-MW-4, ISCO-MW-7, ISCO-MW-8, and ISCO-MW-9) are screened within a localized on-site perched groundwater zone (as identified by Arcadis in previous Site reports) located directly above a silty clay unit near the southern property boundary.

The shallow groundwater aquifer elevation contours are depicted in Figure 4. The two deep wells (MW-15D and MW-23D), two intermediate wells (MW-23I and WCC-1M), and the six wells screened within the localized on-site perched groundwater zone were not considered in the evaluation of the shallow groundwater elevation contours.

Consistent with historical results, shallow groundwater flow is generally toward the southwest.

### **Groundwater Quality**

2015 annual/baseline groundwater monitoring data are presented in **Table 3**. Twenty-two (22) monitoring wells screened in the shallower portion of the local aquifer (MW-6S, MW-10S, MW-14S, MW-19S, MW-23S, MW-24, MW-28, PZ-1S, IW1-BT-2, IW1-DR-1, IW-4S, WCC-1S, MW-5I, MW-9I, MW-11I, MW-23I, WCC-1M, WCC-3M, and extraction well, EW-3, and ISCO-MW-1, ISCO-MW-5, and ISCO-MW-6) and six (6) monitoring wells screened in the localized perched groundwater zone (ISCO-MW-2, ISCO-MW-3, ISCO-MW-4, ISCO-MW-7, ISCO-MW-8, and ISCO-MW-8).



MW-9) were sampled and analyzed for VOCs. Two (2) monitoring wells in the deep aquifer (MW-15D and MW-23D) were also sampled and analyzed for VOCs.

A summary of groundwater sampling results from the 2015 annual/baseline sampling event is as follows:

- Consistent with prior sampling results, VOCs with concentrations above New Jersey Groundwater Quality Standards (NJGWQS) are primarily 1,2-dichloroethane (1,2-DCA) and trichloroethene (TCE)
- Total Contaminants of Concern (COCs)¹ detected in monitoring wells at the Site and immediately downgradient from the Site were generally less than 13 ug/L
- Site COC (i.e., 1,2-DCA and TCE) concentrations were relatively unchanged in off-Site wells
- The highest total COCs were detected in three monitoring wells screened within the ISCO treatment areas, ISCO-MW-2, ISCO-MW-3, and ISCO-MW-5, which exhibited total COCs of 880 ug/L, 80 ug/L, and 200 ug/L, respectively
- The highest 1,2-DCA concentration (834 ug/L) was detected at ISCO-MW-2
- The highest TCE concentration (77 ug/L) was detected at ISCO-MW-3

The 2015 annual/baseline groundwater monitoring results are shown on Figure 5, along with estimated TCE and 1,2-DCA iso-concentration contours. Historical monitoring results are included as Attachment 1, and 2014 baseline/post-Injection Event #1 monitoring results are included as Attachment 2.

In Treatment Area 1, several wells (e.g., ISCO-MW-7, ISCO-MW-8, IW1-BT-2) exhibited total COCs 6 ug/L or less, supporting that progress toward the remedial action objectives has been made. However, groundwater results for other wells (ISCO-MW-2, ISCO-MW-3, and to a lesser degree ISCO-MW-9) continued to exhibit VOC concentrations above NJGWQS.

In Treatment Area 2, PZ-1S, ISCO-MW-1, and ISCO-MW-6 exhibited total COCs of less than 6 ug/L. As noted above, ISCO-MW-5 exhibited 200 ug/L total COCs.

Comparison of the 2015 annual/baseline results to the historical/post-round 1 results indicates that VOC concentrations in groundwater are generally either static or declining. VOC trend analyses were completed for all sampled wells and are included as **Attachment 4**.

A second round of ISCO injections to address groundwater contaminants in Treatment Areas 1 and 2 was completed June 1-11, 2015. Monitoring wells within and proximate to the treatment areas were sampled at frequencies defined in the 2015 Annual/Baseline Groundwater Monitoring Event Summary and Injection Event #2 Treatment Recommendations Summary (approved by EPA/NJDEP on May 27, 2015), to evaluate groundwater quality following the ISCO injection work. As described in that Summary, the VOCs analysis method was updated from EPA Method 8260B to Method 8260C, in accordance with the latest SW-846 methods established by EPA. This change did not materially impact the quality/usability of the data collected for this program.

In accordance with the approved RDR/RAWP, the post-injection report is being submitted to EPA/NJDEP concurrently with this 2015 Annual Groundwater Monitoring Report.

<sup>&</sup>lt;sup>1</sup> Total COCs represents the sum of those groundwater constituents above their respective New Jersey Groundwater Quality Standard (NJGWQS).



Should you have any questions regarding this submission or require additional information, please do not hesitate to contact me at (732) 638-2930.

Very truly yours, O'BRIEN & GERE ENGINEERS, INC.

**Gary Angyal, PE** Vice President

cc: EPLC Site Group

Mr. Chris Young, *de maximis, inc.* Mr. Matt Grubb, *de maximis, inc.* 

Mr. Jeffrey Levesque, O'Brien & Gere Engineers, Inc. Ms. Jessica Lehigh, O'Brien & Gere Engineers, Inc.

### **ATTACHMENTS:**

Table 1 – Monitoring Well Summary

Table 2 - March 2015 Annual/Baseline Groundwater Elevations Summary

Table 3 - March 2015 Annual/Baseline Groundwater Analytical Results

Figure 1 - Site Location Map

Figure 2 - Site Plan

Figure 3 – ISCO Monitoring Plan

Figure 4 - Groundwater Elevations - Shallow Groundwater Aquifer - March 2015

Figure 5 – 2015 Annual/Baseline Groundwater Monitoring Results

Attachment 1 – Historical Groundwater Analytical Results

Attachment 2 - 2014 Baseline/Post-Injection Event #1 Groundwater Analytical Results

Attachment 3 - Data Validation Results

Attachment 4 - Concentration Trend Graphs





# Evor Phillips Leasing Company (EPLC) Superfund Site Old Bridge, New Jersey Monitoring Well Summary Table 1

| Well ID   | Easting<br>(NAD83) | Northing<br>(NAD83) | TOC Elevation<br>(ft MSL) | Top of Screen<br>(ft bgs) | Bottom of<br>Screen (ft bgs) | Top of Sample<br>Interval (ft bgs) | Bottom of<br>Sample Interval<br>(ft bgs) |
|-----------|--------------------|---------------------|---------------------------|---------------------------|------------------------------|------------------------------------|------------------------------------------|
| ISCO-MW-1 | 584,217.85         | 540,637.61          | 42.63                     | 24                        | 29                           | 24                                 | 29                                       |
| ISCO-MW-2 | 584,319.63         | 540,795.20          | 48.92                     | 16                        | 21                           | 16                                 | 21                                       |
| ISCO-MW-3 | 584,387.22         | 540,912.08          | 51.28                     | 22                        | 27                           | 22                                 | 27                                       |
| ISCO-MW-4 | 584,325.53         | 540,918.26          | 44.67                     | 15                        | 20                           | 15                                 | 20                                       |
| ISCO-MW-5 | 584,250.24         | 540,698.22          | 47.81                     | 25                        | 30                           | 25                                 | 30                                       |
| ISCO-MW-6 | 584,302.97         | 540,784.57          | 48.78                     | 27                        | 32                           | 27                                 | 32                                       |
| ISCO-MW-7 | 584,334.67         | 540,870.99          | 46.3                      | 18                        | 23                           | 18                                 | 23                                       |
| ISCO-MW-8 | 584,360.38         | 540,879.45          | 50.19                     | 19                        | 24                           | 19                                 | 24                                       |
| ISCO-MW-9 | 584,422.18         | 541,020.50          | 48.79                     | 20                        | 25                           | 20                                 | 25                                       |
| IW1-BT-2  | 540,925.16         | 584,418.94          | 52.39                     | 15                        | 35                           | 24                                 | 29                                       |
| IW1-DR-1  | 540,926.52         | 584,458.57          | 57.46                     | 20                        | 35                           | 25                                 | 30                                       |
| IW-4S     | 540,871.99         | 584,354.81          | 50.80                     | 31                        | 36                           | 31                                 | 36                                       |
| PZ-1S     | 540,551.93         | 584,158.57          | 44.24                     | 20                        | 30                           | 22                                 | 27                                       |
| MW-5I     | 540,691.57         | 584,309.75          | 49.74                     | 30                        | 40                           | 30                                 | 35                                       |
| MW-6S     | 540,482.53         | 584,118.03          | 43.54                     | 17                        | 32                           | 22                                 | 27                                       |
| MW-9I     | 540,610.57         | 584,300.26          | 48.40                     | 32                        | 42                           | 32                                 | 37                                       |
| MW-10S    | 540,619.21         | 584,165.36          | 45.27                     | 15                        | 30                           | 23                                 | 28                                       |
| MW-11I    | 540,543.75         | 584,212.88          | 47.92                     | 27                        | 37                           | 27                                 | 32                                       |
| MW-14S    | 540,781.83         | 584,184.87          | 32.03                     | 3.5                       | 18.5                         | S 7<br>D 12.5                      | 12<br>17.5                               |
| MW-15D    | 540,495.94         | 584,398.81          | 41.88                     | 90                        | 100                          | 90                                 | 95                                       |
| MW-19S    | 540,887.95         | 584,582.32          | 56.09                     | 19.5                      | 35.5                         | 28                                 | 33                                       |
| MW-23S    | 540,625.52         | 583,937.55          | 27.89                     | 20                        | 30                           | 20                                 | 25                                       |
| MW-23I    | 540,620.38         | 583,935.25          | 27.89                     | 50                        | 60                           | 55                                 | 60                                       |
| MW-23D    | 540,630.28         | 583,939.84          | 27.95                     | 90                        | 100                          | 90                                 | 95                                       |
| MW-24     | 540,404.11         | 584,071.49          | 42.46                     | 15                        | 35                           | 20                                 | 25                                       |
| MW-28     | 541,108.40         | 584,474.91          | 49.87                     | 15                        | 35                           | 23                                 | 28                                       |
| WCC-1S    | 540,461.09         | 583,762.17          | 24.88                     | 28                        | 38                           | 30                                 | 35                                       |
| WCC-1M    | 540,452.25         | 583,758.98          | 26.42                     | 45                        | 55                           | 48                                 | 53                                       |
| WCC-3M    | 535,031.00         | 578,117.00          | 27.31                     | 38                        | 48                           | 30                                 | 35                                       |
| EW-3      | 540,428.73         | 584,097.72          | 44.38                     | 20                        | 65                           | 20                                 | 25                                       |

Notes:

TOC = Top of Inner Casing
MSL = Mean Sea Level
BGS = Below Ground Surface



|           | TOC Elevation | Depth to Water <sup>1</sup> | GW Elevation |
|-----------|---------------|-----------------------------|--------------|
| Well ID   | (ft MSL)      | (ft)                        | (ft MSL)     |
| ISCO-MW-1 | 46.23         | 20.41                       | 25.82        |
| ISCO-MW-2 | 48.92         | 21.26                       | 27.66        |
| ISCO-MW-3 | 51.28         | 24.35                       | 26.93        |
| ISCO-MW-4 | 44.67         | 17.78                       | 26.89        |
| ISCO-MW-5 | 47.81         | 21.95                       | 25.86        |
| ISCO-MW-6 | 48.78         | 22.38                       | 26.40        |
| ISCO-MW-7 | 46.3          | 19.11                       | 27.19        |
| ISCO-MW-8 | 50.19         | 23.15                       | 27.04        |
| ISCO-MW-9 | 48.79         | 21.45                       | 27.34        |
| IW-BT-2   | 52.39         | 25.33                       | 27.06        |
| IW1-DR-1  | 57.46         | 30.28                       | 27.18        |
| IW-4S     | 50.80         | 24.28                       | 26.52        |
| PZ-1S     | 44.24         | 18.60                       | 25.64        |
| MW-5I     | 49.74         | 23.62                       | 26.12        |
| MW-6S     | 43.54         | 18.12                       | 25.42        |
| MW-9I     | 48.40         | 22.46                       | 25.94        |
| MW-10S    | 45.27         | 19.54                       | 25.73        |
| MW-11I    | 47.92         | 22.21                       | 25.71        |
| MW-14S    | 32.03         | 6.00                        | 26.03        |
| MW-15D    | 41.88         | 15.81                       | 26.07        |
| MW-19S    | 56.09         | 28.74                       | 27.35        |
| MW-23S    | 27.89         | 3.00                        | 24.89        |
| MW-23I    | 27.89         | 2.81                        | 25.08        |
| MW-23D    | 27.95         | 3.14                        | 24.81        |
| MW-24     | 42.46         | 17.46                       | 25.00        |
| MW-28     | 49.87         | 22.57                       | 27.30        |
| WCC-1S    | 24.88         | 1.25                        | 23.63        |
| WCC-1M    | 26.42         | 2.83                        | 23.59        |
| WCC-3M    | 27.31         | 6.02                        | 21.29        |
| EW-3      | 44.38         | 17.87                       | 26.51        |

### Notes:

(1) Depth to water is measured in feet below top of inner casing

**GW= Groundwater** 

**TOC** = Top of Inner Casing

MSL = Mean Sea Level

**BGS = Below Ground Surface** 



| Sample ID                                  | D                                   | FB                     | FB-FILTERED                                      | FB                     | FB-FILTERED | ТВ                     | ТВ                     | ТВ                     | ISCO-MW-1              | ISCO-MW-1     | ISCO-MW-2            | ISCO-MW-2                                        | ISCO-MW-3              | ISCO-MW-3                                        | ISCO-MW-4                  | ISCO-MW-4     | ISCO-MW-5              |
|--------------------------------------------|-------------------------------------|------------------------|--------------------------------------------------|------------------------|-------------|------------------------|------------------------|------------------------|------------------------|---------------|----------------------|--------------------------------------------------|------------------------|--------------------------------------------------|----------------------------|---------------|------------------------|
| Lab Sample ID                              | NJ CLASS IIA<br>GROUNDWATER QUALITY | JB89329-22             | JB89329-22F                                      | JB89329-32             | JB89329-32F | JB89329-13             | JB89329-23             | JB89329-33             | JB89329-24             | JB89329-24F   | JB89329-20           | JB89329-20F                                      | JB89329-14             | JB89329-14F                                      | JB89329-21                 | JB89329-21F   | JB89329-26             |
| Sample Date                                | CRITERIA (7/22/2010)                | 3/6/2015               | 3/6/2015                                         | 3/9/2015               | 3/9/2015    | 3/4/2015               | 3/6/2015               | 3/10/2015              | 3/9/2015               | 3/9/2015      | 3/6/2015             | 3/6/2015                                         | 3/6/2015               | 3/6/2015                                         | 3/6/2015                   | 3/6/2015      | 3/9/2015               |
| Matrix                                     | ix ug/L                             | WATER                  | WATER                                            | WATER                  | WATER       | WATER                  | WATER                  | WATER                  | GW                     | GW - FILTERED | GW                   | GW - FILTERED                                    | GW                     | GW - FILTERED                                    | GW                         | GW - FILTERED | GW                     |
| Unit                                       |                                     | ug/L                   | ug/L                                             | ug/L                   | ug/L        | ug/L                   | ug/L                   | ug/L                   | ug/L                   | ug/L          | ug/L                 | ug/L                                             | ug/L                   | ug/L                                             | ug/L                       | ug/L          | ug/L                   |
| Volatile Organic Compounds (VOCs)          |                                     |                        |                                                  |                        |             |                        |                        |                        |                        |               |                      |                                                  |                        |                                                  |                            |               |                        |
| Acetone                                    | 6000                                | ND (2.6)               | -                                                | ND (2.6)               | -           | ND (2.6)               | ND (2.6)               | ND (2.6)               | ND (2.6)               | -             | 98.4                 | -                                                | 17                     | -                                                | ND (2.6)                   | -             | ND (2.6)               |
| Benzene                                    | 1                                   | ND (0.21)              | -                                                | ND (0.21)              | -           | ND (0.21)              | ND (0.21)              | ND (0.21)              | ND (0.21)              | -             | 1.6                  | J -                                              | ND (0.21)              | -                                                | ND (0.21)                  | -             | 0.91                   |
| Bromochloromethane                         | -                                   | ND (0.49)              | -                                                | ND (0.49)              | =           | ND (0.49)              | ND (0.49)              | ND (0.49)              | ND (0.49)              | -             | ND (2.4)             | -                                                | ND (0.49)              | =                                                | ND (0.49)                  | -             | ND (0.49)              |
| Bromodichloromethane                       | 1                                   | ND (0.28)              | -                                                | ND (0.28)              | -           | ND (0.28)              | ND (0.28)              | ND (0.28)              | ND (0.28)              | -             | ND (1.4)             | -                                                | ND (0.28)              | -                                                | ND (0.28)                  | -             | ND (0.28)              |
| Bromoform Bromomethane                     | 10                                  | ND (0.31)<br>ND (0.39) | -                                                | ND (0.31)<br>ND (0.39) | -           | ND (0.31)<br>ND (0.39) | ND (0.31)<br>ND (0.39) | ND (0.31)<br>ND (0.39) | ND (0.31)<br>ND (0.39) | -             | ND (1.6)<br>18.2     | -                                                | ND (0.31)<br>ND (0.39) | -                                                | ND (0.31)<br>ND (0.39)     | -             | ND (0.31)<br>ND (0.39) |
| 2-Butanone (MEK)                           | 300                                 | ND (0.59)              | <del>                                     </del> | ND (2.5)               | -           | ND (0.59)              | ND (2.5)               | ND (2.5)               | ND (2.5)               | -             | 65.4                 |                                                  | ND (2.5)               | _                                                | ND (2.5)                   | -             | ND (2.5)               |
| Carbon disulfide                           | 700                                 | ND (0.50)              | -                                                | ND (0.50)              | -           | ND (0.50)              | ND (0.50)              | ND (0.50)              | ND (0.50)              | -             | 8.7                  | J -                                              | ND (0.50)              | -                                                | ND (0.50)                  | -             | ND (0.50)              |
| Carbon tetrachloride                       | 1                                   | ND (0.24)              | - 1                                              | ND (0.24)              | -           | ND (0.24)              | ND (0.24)              | ND (0.24)              | ND (0.24)              | -             | ND (1.2)             | -                                                | ND (0.24)              | -                                                | ND (0.24)                  | -             | ND (0.24)              |
| Chlorobenzene                              | 50                                  | ND (0.27)              | -                                                | ND (0.27)              | -           | ND (0.27)              | ND (0.27)              | ND (0.27)              | ND (0.27)              | -             | ND (1.4)             | -                                                | ND (0.27)              | -                                                | ND (0.27)                  | -             | ND (0.27)              |
| Chloroethane                               | -                                   | ND (0.56)              | -                                                | ND (0.56)              | -           | ND (0.56)              | ND (0.56)              | ND (0.56)              | ND (0.56)              | -             | ND (2.8)             | -                                                | ND (0.56)              | -                                                | ND (0.56)                  | -             | ND (0.56)              |
| Chloroform                                 | 70                                  | ND (0.20)              | -                                                | ND (0.20)              | -           | ND (0.20)              | ND (0.20)              | ND (0.20)              | ND (0.20)              | -             | 3.2                  | J -                                              | ND (0.20)              | -                                                | ND (0.20)                  | -             | ND (0.20)              |
| Chloromethane                              | -                                   | ND (0.33)              | -                                                | ND (0.33)              | -           | ND (0.33)              | ND (0.33)              | ND (0.33)              | ND (0.33)              | -             | 3.7                  | J -                                              | ND (0.33)              | -                                                | ND (0.33)                  | -             | ND (0.33)              |
| Cyclohexane                                | -                                   | ND (0.37)              | -                                                | ND (0.37)              | -           | ND (0.37)              | ND (0.37)              | ND (0.37)              | ND (0.37)              | -             | ND (1.9)             | -                                                | ND (0.37)              | -                                                | ND (0.37)                  | -             | 0.45 J                 |
| 1,2-Dibromo-3-chloropropane                | 0.02                                | ND (1.2)               | -                                                | ND (1.2)               | -           | ND (1.2)               | ND (1.2)               | ND (1.2)               | ND (1.2)               | -             | ND (5.9)             | -                                                | ND (1.2)               | -                                                | ND (1.2)                   | -             | ND (1.2)               |
| Dibromochloromethane                       | 1                                   | ND (0.25)              | -                                                | ND (0.25)              | -           | ND (0.25)              | ND (0.25)              | ND (0.25)              | ND (0.25)              | -             | ND (1.2)             | -                                                | ND (0.25)              | -                                                | ND (0.25)                  | -             | ND (0.25)              |
| 1,2-Dibromoethane                          | 0.03                                | ND (0.23)              | -                                                | ND (0.23)              | -           | ND (0.23)              | ND (0.23)              | ND (0.23)              | ND (0.23)              | -             | ND (1.1)             | -                                                | ND (0.23)              | -                                                | ND (0.23)                  | -             | ND (0.23)              |
| 1,2-Dichlorobenzene                        | 600                                 | ND (0.16)              | -                                                | ND (0.16)              | -           | ND (0.16)              | ND (0.16)              | ND (0.16)              | ND (0.16)              | -             | ND (0.80)            | -                                                | ND (0.16)              | -                                                | ND (0.16)                  | -             | ND (0.16)              |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene | 600<br>75                           | ND (0.26)<br>ND (0.24) | -                                                | ND (0.26)<br>ND (0.24) | -           | ND (0.26)<br>ND (0.24) | ND (0.26)<br>ND (0.24) | ND (0.26)<br>ND (0.24) | ND (0.26)<br>ND (0.24) | -             | ND (1.3)<br>ND (1.2) | -                                                | ND (0.26)<br>ND (0.24) | -                                                | ND (0.26)<br>ND (0.24)     | -             | ND (0.26)<br>ND (0.24) |
| Dichlorodifluoromethane                    | 1000                                | ND (0.24)              | -                                                | ND (0.24)              | -           | ND (0.24)              | ND (0.24)              | ND (0.73)              | ND (0.24)              | -             | ND (1.2)             | + -                                              | ND (0.24)<br>ND (0.73) | -                                                | ND (0.24)<br>ND (0.73)     | -             | ND (0.24)              |
| 1,1-Dichloroethane                         | 50                                  | ND (0.75)              | <del>                                     </del> | ND (0.75)              | -           | ND (0.75)              | ND (0.75)              | ND (0.35)              | ND (0.75)              | _             | ND (1.7)             | <del>                                     </del> | ND (0.75)              | -                                                | ND (0.75)                  | -             | 0.74 J                 |
| 1,2-Dichloroethane                         | 2                                   | ND (0.30)              | -                                                | ND (0.30)              | -           | ND (0.30)              | ND (0.30)              | ND (0.30)              | 3.6                    | -             | 834                  | -                                                | ND (0.30)              | -                                                | 0.53 J                     | -             | 165                    |
| 1,1-Dichloroethene                         | 1                                   | ND (0.50)              | -                                                | ND (0.50)              | -           | ND (0.50)              | ND (0.50)              | ND (0.50)              | ND (0.50)              | -             | ND (2.5)             | -                                                | ND (0.50)              | -                                                | ND (0.50)                  | -             | ND (0.50)              |
| cis-1,2-Dichloroethene                     | 70                                  | ND (0.33)              | -                                                | ND (0.33)              | -           | ND (0.33)              | ND (0.33)              | ND (0.33)              | ND (0.33)              | -             | ND (1.6)             | -                                                | 55                     | -                                                | ND (0.33)                  | -             | 2.8                    |
| trans-1,2-Dichloroethene                   | 100                                 | ND (0.51)              | -                                                | ND (0.51)              | -           | ND (0.51)              | ND (0.51)              | ND (0.51)              | 0.84 J                 | -             | ND (2.6)             | -                                                | 1.5                    | -                                                | ND (0.51)                  | -             | 0.88 J                 |
| 1,2-Dichloropropane                        | 1                                   | ND (0.43)              | -                                                | ND (0.43)              | -           | ND (0.43)              | ND (0.43)              | ND (0.43)              | ND (0.43)              | -             | ND (2.2)             | -                                                | ND (0.43)              | -                                                | ND (0.43)                  | -             | ND (0.43)              |
| cis-1,3-Dichloropropene                    | -                                   | ND (0.28)              | -                                                | ND (0.28)              | -           | ND (0.28)              | ND (0.28)              | ND (0.28)              | ND (0.28)              | -             | ND (1.4)             | -                                                | ND (0.28)              | -                                                | ND (0.28)                  | -             | ND (0.28)              |
| trans-1,3-Dichloropropene                  | -                                   | ND (0.32)              | -                                                | ND (0.32)              | -           | ND (0.32)              | ND (0.32)              | ND (0.32)              | ND (0.32)              | -             | ND (1.6)             | -                                                | ND (0.32)              | -                                                | ND (0.32)                  | -             | ND (0.32)              |
| 1,4-Dioxane                                | -                                   | ND (51)                | -                                                | ND (51)                | -           | ND (51)                | ND (51)                | ND (51)                | ND (51)                | -             | ND (250)             | -                                                | ND (51)                | -                                                | ND (51)                    | -             | ND (51)                |
| Ethylbenzene                               | 700                                 | ND (0.40)              | -                                                | ND (0.40)              | -           | ND (0.40)              | ND (0.40)              | ND (0.40)              | ND (0.40)              | -             | ND (2.0)             | -                                                | ND (0.40)              | -                                                | ND (0.40)                  | -             | ND (0.40)              |
| Freon 113                                  | -                                   | ND (0.45)              | -                                                | ND (0.45)              | -           | ND (0.45)              | ND (0.45)              | ND (0.45)              | ND (0.45)              | -             | ND (2.2)             | -                                                | ND (0.45)              | -                                                | ND (0.45)                  | -             | ND (0.45)              |
| 2-Hexanone                                 | 700                                 | ND (1.7)<br>ND (0.26)  | -                                                | ND (1.7)<br>ND (0.26)  | -           | ND (1.7)<br>ND (0.26)  | ND (1.7)<br>ND (0.26)  | ND (1.7)<br>ND (0.26)  | ND (1.7)               | -             | ND (8.7)<br>ND (1.3) | -                                                | ND (1.7)<br>ND (0.26)  | -                                                | ND (1.7)<br>ND (0.26)      | -             | ND (1.7)<br>0.73 J     |
| Isopropylbenzene Methyl Acetate            | 7000                                | ND (0.26)<br>ND (3.1)  | -                                                | ND (0.26)              | -           | ND (0.26)<br>ND (3.1)  | ND (0.26)              | ND (0.26)              | ND (0.26)<br>ND (3.1)  | -             | ND (1.5)             | 1 -                                              | ND (0.26)              | -                                                | ND (0.26)                  | -             | ND (3.1)               |
| Methylrycolohexane                         | -                                   | ND (0.22)              | _                                                | ND (0.22)              | -           | ND (0.22)              | ND (0.22)              | ND (0.22)              | ND (0.22)              | _             | ND (1.1)             | -                                                | ND (0.22)              | -                                                | ND (0.22)                  | -             | ND (0.22)              |
| Methyl Tert Butyl Ether                    | 70                                  | ND (0.26)              | -                                                | ND (0.26)              | -           | ND (0.26)              | ND (0.26)              | ND (0.26)              | ND (0.26)              | -             | ND (1.3)             | -                                                | ND (0.26)              | -                                                | ND (0.26)                  | -             | ND (0.26)              |
| 4-Methyl-2-pentanone(MIBK)                 | -                                   | ND (1.1)               | -                                                | ND (1.1)               | -           | ND (1.1)               | ND (1.1)               | ND (1.1)               | ND (1.1)               | -             | ND (5.3)             | -                                                | ND (1.1)               | -                                                | ND (1.1)                   | -             | ND (1.1)               |
| Methylene chloride                         | 3                                   | ND (0.81)              | -                                                | ND (0.81)              | -           | ND (0.81)              | ND (0.81)              | ND (0.81)              | ND (0.81)              | -             | ND (4.1)             | -                                                | ND (0.81)              | -                                                | 1.7 J                      | -             | ND (0.81)              |
| Styrene<br>1,1,2,2-Tetrachloroethane       | 100                                 | ND (0.26)<br>ND (0.39) | -                                                | ND (0.26)<br>ND (0.39) | -           | ND (0.26)              | ND (0.26)<br>ND (0.39) | ND (0.26)              | ND (0.26)              | -             | ND (1.3)             | -                                                | ND (0.26)<br>ND (0.39) | -                                                | ND (0.26)<br>ND (0.39)     | -             | ND (0.26)              |
| Tetrachloroethene                          | 1                                   | ND (0.35)              | -                                                | ND (0.35)              | -           | ND (0.39)<br>ND (0.35) | ND (0.35)              | ND (0.39)<br>ND (0.35) | ND (0.39)<br>ND (0.35) | -             | 25.1<br>ND (1.8)     | -                                                | 2.3                    | -                                                | ND (0.35)                  | -             | ND (0.39)<br>ND (0.35) |
| Toluene                                    | 600                                 | ND (0.22)              | -                                                | ND (0.22)              | -           | ND (0.22)              | ND (0.22)              | ND (0.22)              | ND (0.22)              | -             | ND (1.1)             | -                                                | ND (0.22)              | -                                                | ND (0.22)                  | -             | ND (0.22)              |
| 1,2,3-Trichlorobenzene                     | -                                   | ND (0.26)              | -                                                | ND (0.26)              | -           | ND (0.26)              | ND (0.26)              | ND (0.26)              | ND (0.26)              | -             | ND (1.3)             | -                                                | ND (0.26)              | -                                                | ND (0.26)                  | -             | ND (0.26)              |
| 1,2,4-Trichlorobenzene                     | 9                                   | ND (0.22)              | -                                                | ND (0.22)              | -           | ND (0.22)              | ND (0.22)              | ND (0.22)              | ND (0.22)              | -             | ND (1.1)             | -                                                | ND (0.22)              | -                                                | ND (0.22)                  | -             | ND (0.22)              |
| 1,1,1-Trichloroethane                      | 30                                  | ND (0.32)              | -                                                | ND (0.32)              | -           | ND (0.32)              | ND (0.32)              | ND (0.32)              | ND (0.32)              | -             | ND (1.6)             | 1 -                                              | ND (0.32)              | -                                                | ND (0.32)                  | -             | 0.86 J                 |
| 1,1,2-Trichloroethane Trichloroethene      | 1                                   | ND (0.28)<br>ND (0.25) | <del>                                     </del> | ND (0.28)<br>ND (0.25) | -           | ND (0.28)<br>ND (0.25) | ND (0.28)<br>ND (0.25) | ND (0.28)<br>ND (0.25) | ND (0.28)<br>0.34 J    | -             | ND (1.4)<br>5.9      | <del>                                     </del> | ND (0.28)              | -                                                | ND (0.28)<br><b>0.56</b> J | -             | ND (0.28)<br>33.3      |
| Trichlorofluoromethane                     | 2000                                | ND (0.28)              | -                                                | ND (0.28)              | -           | ND (0.28)              | ND (0.28)              | ND (0.28)              | ND (0.28)              | -             | ND (1.4)             | -                                                | ND (0.28)              | -                                                | ND (0.28)                  | -             | ND (0.28)              |
| Vinyl chloride                             | 1                                   | ND (0.17)              | - 1                                              | ND (0.17)              | -           | ND (0.17)              | ND (0.17)              | ND (0.17)              | ND (0.17)              | -             | ND (0.87)            | -                                                | ND (0.17)              | -                                                | ND (0.17)                  | -             | ND (0.17)              |
| m,p-Xylene                                 | -                                   | ND (0.45)              | -                                                | ND (0.45)              | -           | ND (0.45)              | ND (0.45)              | ND (0.45)              | 0.55 J                 | -             | 2.5                  | J -                                              | ND (0.45)              | -                                                | ND (0.45)                  | -             | 0.55 J                 |
| o-Xylene                                   | -                                   | ND (0.20)              | -                                                | ND (0.20)              | -           | ND (0.20)              | ND (0.20)              | ND (0.20)              | 0.28 J                 |               |                      | J -                                              | ND (0.20)              | -                                                | ND (0.20)                  | -             | 0.37 J                 |
| Xylene (total) Total VOCs                  | 1000                                | ND (0.20)<br>0         | <del>                                     </del> | ND (0.20)<br>0         | -           | ND (0.20)<br>0         | ND (0.20)<br>0         | ND (0.20)<br>0         | 0.83 J<br>5.61         | -             | 1068.2               | -                                                | ND (0.20)<br>152.9     | <del>                                     </del> | ND (0.20)<br>2.79          | -             | 0.91 J<br>206.58       |
| 10141 4000                                 | -                                   | I 0                    | 1 1 1                                            | U                      | 1           | U                      | U                      | 1 1                    | 3.01                   | I l           | 1000.2               | 1                                                | 132.8                  | I                                                | 2.13                       | 1             | 200.00                 |
| GC/MS Volatile TIC                         |                                     |                        |                                                  |                        |             |                        |                        |                        |                        |               |                      |                                                  |                        |                                                  |                            |               |                        |
| Total TIC, Volatile                        | -                                   | 0                      | - 1                                              | 0                      | - 1         | 0                      | 0                      | 0                      | 0                      | - 1           | 0                    | - 1                                              | 0                      | - 1                                              | 0                          | - 1           | 11.6 J                 |
| Total Alkanes                              | -                                   | 0                      | -                                                | 0                      | -           | 0                      | 0                      | 0                      | 0                      | -             | 0                    | -                                                | 0                      | -                                                | 0                          | -             | 0                      |
|                                            |                                     |                        |                                                  |                        |             |                        |                        |                        |                        |               |                      |                                                  |                        |                                                  |                            |               |                        |
| Metals Analysis                            |                                     |                        |                                                  |                        |             |                        |                        |                        |                        |               |                      |                                                  |                        |                                                  |                            |               |                        |
| Chromium                                   | 70                                  | <10                    | <10                                              | <10                    | <10         | -                      |                        | -                      | 11.8                   | <10           | 188                  | 48.5                                             | 354                    | 185                                              | 321                        |               | <10                    |
| Iron<br>Sodium                             | 300<br>50000                        | <10000                 | <100                                             | <10000                 | <100        | -                      | -                      | -                      | 11,000                 | <100          | 1,070,000            | 5,320                                            | 176,000                | 431                                              | 13,200                     | 306           | 17,900                 |
|                                            | 53000                               | 1.3000                 | <u> </u>                                         | 1.0000                 |             | 1                      | 1                      | 1 1                    | ,000                   | <u> </u>      | .,0.0,000            | 1                                                | ,000                   | 1                                                | .0,200                     | 1             | ,500                   |
| General Chemistry                          |                                     |                        |                                                  |                        |             |                        |                        |                        |                        |               |                      |                                                  |                        |                                                  |                            |               |                        |
| Solids, Total Dissolved                    | 500000                              | <10000                 | -                                                | <10000                 | -           | -                      | -                      | -                      |                        |               | 2,480,000            | <u> </u>                                         | 678,000                | -                                                | 48,800                     | -             | <10000                 |
| Sulfate                                    | 250000                              | <10000                 | <u>-</u>                                         | <10000                 | -           | -                      | -                      |                        | 118,000                | -             | 1,980,000            | -                                                | 259,000                | -                                                | 41,200                     | -             | 79,200                 |
|                                            | ·                                   |                        |                                                  |                        |             |                        |                        |                        | ·                      |               | · ·                  |                                                  |                        | ·                                                | ·                          | ·             |                        |

Notes:

ND, < Not Detected Above Detection Limits

- Not Sampled

Bolded value indicates a detect above detection limits

Red bolded value indicates a detection that exceeds regulatory criteria

| Sample ID                                       | NJ CLASS IIA         | ISCO-MW-5                 | ISCO-MW-6              | ISCO-MW-6                 | ISCO-MW-7              | ISCO-MW-7                 | ISCO-MW-8              | ISCO-MW-8                 | ISCO-MW-9              | ISCO-MW-9                 | IW1-BT-2               | IW1-BT-2                  | IW1-DR-1               | IW1-DR-1                  | IW-4S                  | IW-4S                     | PZ-1S                  |
|-------------------------------------------------|----------------------|---------------------------|------------------------|---------------------------|------------------------|---------------------------|------------------------|---------------------------|------------------------|---------------------------|------------------------|---------------------------|------------------------|---------------------------|------------------------|---------------------------|------------------------|
| Lab Sample ID                                   | GROUNDWATER QUALITY  | JB89329-26F               | JB89329-18             | JB89329-18F               | JB89329-19             | JB89329-19F               | JB89329-16             | JB89329-16F               | JB89329-30             | JB89329-30F               | JB89329-15             | JB89329-15F               | JB89329-10             | JB89329-10F               | JB89329-17             | JB89329-17F               | JB89329-11             |
| Sample Date<br>Matrix                           | CRITERIA (7/22/2010) | 3/9/2015<br>GW - FILTERED | 3/6/2015<br>GW         | 3/6/2015<br>GW - FILTERED | 3/6/2015<br>GW         | 3/6/2015<br>GW - FILTERED | 3/6/2015<br>GW         | 3/6/2015<br>GW - FILTERED | 3/9/2015<br>GW         | 3/9/2015<br>GW - FILTERED | 3/6/2015<br>GW         | 3/6/2015<br>GW - FILTERED | 3/4/2015<br>GW         | 3/4/2015<br>GW - FILTERED | 3/6/2015<br>GW         | 3/6/2015<br>GW - FILTERED | 3/4/2015<br>GW         |
| Watrix                                          | ug/L                 | ug/L                      | ug/L                   | ug/L                      | ug/L                   | ug/L                      | ug/L                   | ug/L                      | ug/L                   | ug/L                      | ug/L                   | ug/L                      | ug/L                   | ug/L                      | ug/L                   | ug/L                      | ug/L                   |
| Volatile Organic Compounds (VOCs)               |                      | ug/ L                     | ug/L                   | ug/L                      | ug/ L                  | ug/L                      | ug/L                   | ug/L                      | ug/L                   | ug/ L                     | ug/L                   | ug/L                      | ug/L                   | ug/L                      | ug/L                   | ug/L                      | ug/L                   |
| Acetone                                         | 6000                 |                           | ND (2.6)               | - 1                       | ND (2.6)               | -                         | 16.8                   | - 1                       | ND (2.6)               | -                         | ND (2.6)               | - 1                       | ND (2.6)               | -                         | ND (2.6)               | -                         | ND (2.6)               |
| Benzene                                         | 1                    | -                         | ND (0.21)              |
| Bromochloromethane                              | -                    | -                         | ND (0.49)              |
| Bromodichloromethane                            | 1                    | -                         | ND (0.28)              |
| Bromoform                                       | 4                    | -                         | ND (0.31)              |
| Bromomethane                                    | 10                   | -                         | ND (0.39)              | -                         | 2.8                    | -                         | ND (0.39)              |
| 2-Butanone (MEK)                                | 300<br>700           | -                         | ND (2.5)<br>ND (0.50)  | -                         | ND (2.5)               | -                         | ND (2.5)<br>ND (0.50)  | -                         | ND (2.5)               | -                         | ND (2.5)<br>ND (0.50)  |
| Carbon disulfide Carbon tetrachloride           | 1                    | -                         | ND (0.24)              | -                         | 0.92 J                 | -                         | 0.51                   |                           | ND (0.24)              | -                         | ND (0.50)<br>ND (0.24) | -                         | ND (0.30)              | -                         | ND (0.50)<br>ND (0.24) | -                         | ND (0.24)              |
| Chlorobenzene                                   | 50                   | -                         | ND (0.27)              |
| Chloroethane                                    | -                    | -                         | ND (0.56)              |
| Chloroform                                      | 70                   | -                         | ND (0.20)              | -                         | 1.1                    | -                         | 1.4                    | -                         | ND (0.20)              | -                         | 0.27                   | J -                       | ND (0.20)              | -                         | ND (0.20)              | -                         | ND (0.20)              |
| Chloromethane                                   | -                    | -                         | ND (0.33)              | -                         | 0.96 J                 | -                         | ND (0.33)              |
| Cyclohexane                                     | -                    |                           | ND (0.37)              | -                         | ND (0.37)              |                           | ND (0.37)              | -                         | ND (0.37)              |
| 1,2-Dibromo-3-chloropropane                     | 0.02                 | -                         | ND (1.2)               |
| Dibromochloromethane                            | 1                    | -                         | ND (0.25)              |
| 1,2-Dibromoethane<br>1,2-Dichlorobenzene        | 0.03<br>600          | -                         | ND (0.23)<br>ND (0.16) | +                         | ND (0.23)<br>ND (0.16) | -                         | ND (0.23)<br>ND (0.16) | -                         | ND (0.23)<br>ND (0.16) |
| 1,3-Dichlorobenzene                             | 600                  | -                         | ND (0.16)              | -                         | ND (0.16)<br>ND (0.26) | -                         | ND (0.16)              |
| 1,4-Dichlorobenzene                             | 75                   |                           | ND (0.24)              | -                         | ND (0.24)              |
| Dichlorodifluoromethane                         | 1000                 | -                         | ND (0.73)              |
| 1,1-Dichloroethane                              | 50                   | -                         | ND (0.35)              |
| 1,2-Dichloroethane                              | 2                    | -                         | ND (0.30)              | -                         | 2.5                    | -                         | 3.1                    | -                         | ND (0.30)              | -                         | 4.4                    |
| 1,1-Dichloroethene                              | 1                    | -                         | ND (0.50)              |
| cis-1,2-Dichloroethene                          | 70                   | -                         | 0.59 J                 | -                         | ND (0.33)              | -                         | 0.44 J                 | -                         | ND (0.33)              | -                         | ND (0.33)              |
| trans-1,2-Dichloroethene                        | 100                  | -                         | 0.56 J<br>ND (0.43)    | -                         | ND (0.51)<br>ND (0.43) | -                         | ND (0.51)<br>ND (0.43) | -                         | ND (0.51)<br>ND (0.43) | -                         | ND (0.51)<br>ND (0.43) | -                         | ND (0.51)<br>ND (0.43) | -                         | ND (0.51)<br>ND (0.43) | -                         | ND (0.51)<br>ND (0.43) |
| 1,2-Dichloropropane<br>cis-1,3-Dichloropropene  | 1                    | -                         | ND (0.43)<br>ND (0.28) |
| trans-1,3-Dichloropropene                       | -                    | -                         | ND (0.32)              |
| 1,4-Dioxane                                     | -                    | -                         | ND (51)                |
| Ethylbenzene                                    | 700                  | -                         | ND (0.40)              |
| Freon 113                                       | -                    | -                         | ND (0.45)              |
| 2-Hexanone                                      | -                    | -                         | ND (1.7)               |
| Isopropylbenzene                                | 700                  | -                         | ND (0.26)              |
| Methyl Acetate Methylcyclohexane                | 7000                 | -                         | ND (3.1)<br>ND (0.22)  |
| Methyl Tert Butyl Ether                         | 70                   | -                         | ND (0.26)              |
| 4-Methyl-2-pentanone(MIBK)                      | -                    | -                         | ND (1.1)               | -                         | ND (1.1)               | -                         | ND (1.1)               |                           | ND (1.1)               | -                         | ND (1.1)               |                           | ND (1.1)               | -                         | ND (1.1)               | -                         | ND (1.1)               |
| Methylene chloride                              | 3                    | -                         | ND (0.81)              | -                         | 1 J                    |
| Styrene<br>1,1,2,2-Tetrachloroethane            | 100                  | -                         | ND (0.26)<br>ND (0.39) |
| Tetrachloroethene                               | 1                    | -                         | ND (0.35)              | -                         | 0.68 J                 | -                         | 0.92                   | J -                       | 0.73                   | J -                       | ND (0.35)              | -                         | ND (0.35)              | -                         | ND (0.35)              | -                         | ND (0.35)              |
| Toluene                                         | 600                  |                           | ND (0.22)              | -                         | ND (0.22)              |
| 1,2,3-Trichlorobenzene                          | -                    | -                         | ND (0.26)              |
| 1,2,4-Trichlorobenzene<br>1,1,1-Trichloroethane | 9                    | -                         | ND (0.22)<br>ND (0.32) |
| 1,1,2-Trichloroethane                           | 3                    | -                         | ND (0.32)              | -                         | ND (0.28)              |
| Trichloroethene                                 | 1                    | -                         | 1.8                    | -                         | 1.1                    | - 1                       | 2.9                    | -                         | 12.5                   | -                         | 2                      | -                         | 2.7                    | -                         | ND (0.25)              | -                         | 1                      |
| Trichlorofluoromethane                          | 2000                 |                           | ND (0.28)              | -                         | ND (0.28)              |
| Vinyl chloride<br>m,p-Xylene                    | 1 -                  | <del>-</del> -            | ND (0.17)<br>ND (0.45) | -                         | ND (0.17)<br>ND (0.45) | -                         | ND (0.17)<br>ND (0.45) | -                         | ND (0.17)<br>ND (0.45) | -                         | ND (0.17)<br>ND (0.45) | -                         | ND (0.17)<br>ND (0.45) | -                         | ND (0.17)<br>ND (0.45) | -                         | ND (0.17)<br>ND (0.45) |
| o-Xylene                                        | -                    | - +                       | ND (0.43)              | -                         | ND (0.43)              | -                         | ND (0.20)              | -                         | ND (0.20)              | -                         | ND (0.43)              | -                         | ND (0.20)              | - +                       |                        | J -                       | ND (0.20)              |
| Xylene (total)                                  | 1000                 | -                         | ND (0.20)              | -                         | ND (0.20)              | - 1                       | ND (0.20)              | -                         |                        | J -                       | ND (0.20)              |
| Total VOCs                                      | -                    |                           | 2.95                   |                           | 10.06                  |                           | 25.63                  |                           | 13.23                  |                           | 2.27                   |                           | 3.14                   |                           | 0.21                   |                           | 6.4                    |
| GC/MS Volatile TIC                              |                      |                           |                        |                           |                        |                           |                        |                           |                        |                           |                        |                           |                        |                           |                        |                           |                        |
| Total TIC, Volatile                             | -                    |                           | 0                      | -                         | 0                      | - 1                       | 0                      | - 1                       | 0                      |                           | 0                      |                           | 0                      |                           | 0                      |                           | 10   J                 |
| Total Alkanes                                   | -                    | -                         | 0                      | - +                       | 0                      | -                         | 0                      | -                         | 0                      | - +                       | 0                      | - +                       | 0                      | - 1                       | 0                      | -                         | 0                      |
|                                                 |                      |                           |                        |                           |                        |                           |                        |                           |                        |                           |                        |                           |                        |                           |                        |                           |                        |
| Metals Analysis                                 |                      |                           |                        |                           |                        |                           |                        |                           |                        |                           |                        |                           |                        |                           |                        |                           |                        |
| Chromium                                        | 70                   | <10                       | <10                    | <10                       |                        |                           | 1,420                  |                           | _                      | <10                       | 712                    | 808 <sup>8</sup>          | <10                    |                           |                        |                           | 14.2                   |
| Iron<br>Sodium                                  | 300<br>50000         | 214                       | 91,600                 | <100                      | 189,000                | 803                       | 418,000                | <100                      | 33,000                 | <100                      | 578,000                | 591                       | 20,500                 | 16,400                    | 117,000                | 416                       | 44,500                 |
|                                                 |                      | ı L                       | ,                      | ı <u>L</u>                | ,                      | 1                         | ,                      | 1                         | ,-50                   | 1                         | ,                      | - L                       | -,                     |                           | ,*                     | 1                         | ,                      |
| General Chemistry                               |                      |                           |                        |                           |                        |                           |                        |                           |                        |                           |                        |                           |                        |                           |                        |                           |                        |
| Solids, Total Dissolved<br>Sulfate              | 500000<br>250000     | -                         | 395,000                | -                         | 824,000                | -                         | 2,420,000              | -                         | 235,000                | -                         | 1,980,000              | -                         | 225,000                | -                         |                        | -                         | 420,000<br>102,000     |
| Ounaic                                          | 20000                |                           | 218,000                | <u> </u>                  | 326,000                | -                         | 1,240,000              |                           | <10000                 | -                         | 703,000                | -                         | 75,300                 | -                         | 97,000                 | -                         | 102,000                |
| Notes:                                          |                      |                           |                        |                           |                        |                           |                        |                           |                        |                           |                        |                           |                        |                           |                        |                           |                        |

Notes:

ND, < Not Detected Above Detection Limits

- Not Sampled

Bolded value indicates a detect above detection limits

Red bolded value indicates a detection that exceeds regulatory criteria

Page 2 of 4 2/3/2016

| L                                            | Sample ID  Lab Sample ID  NJ CLASS IIA | PZ-1S<br>JB89329-11F | MW-51<br>JB89329-9     | MW-5I<br>JB89329-9F | MW-6S<br>JB89329-25    | MW-9I<br>JB89329-7     | MW-10S<br>JB89329-37       | MW-10S<br>JB89329-37F | MW-11I<br>JB89329-8    | MW-11I<br>JB89329-8F | MW-14SS<br>JB89329-35  | MW-14SS<br>JB89329-35F | MW-14SD<br>JB89329-36  | MW-14SD<br>JB89329-36F | MW-15D<br>JB89329-4    | MW-19S<br>JB89329-6     | MW-23S<br>JB89329-28    |
|----------------------------------------------|----------------------------------------|----------------------|------------------------|---------------------|------------------------|------------------------|----------------------------|-----------------------|------------------------|----------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-------------------------|-------------------------|
|                                              | Sample Date CRITERIA (7/22/2010)       | 3/4/2015             | 3/4/2015               | 3/4/2015            | 3/9/2015               | 3/4/2015               | 3/10/2015                  | 3/10/2015             | 3/4/2015               | 3/4/2015             | 3/10/2015              | 3/10/2015              | 3/10/2015              | 3/10/2015              | 3/4/2015               | 3/4/2015                | 3/9/2015                |
|                                              | Matrix<br>ug/L                         | GW - FILTERED        | GW                     | GW - FILTERED       | GW                     | GW                     | GW                         | GW                    | GW                     | GW                   | GW                     | GW                     | GW                     | GW                     | GW                     | GW                      | GW                      |
| Volatila Organic Compounds (VC               | Unit                                   | ug/L                 | ug/L                   | ug/L                | ug/L                   | ug/L                   | ug/L                       | ug/L                  | ug/L                   | ug/L                 | ug/L                   | ug/L                   | ug/L                   | ug/L                   | ug/L                   | ug/L                    | ug/L                    |
| Volatile Organic Compounds (VC<br>Acetone    | 6000                                   | - 1                  | ND (2.6)               | 1 - 1               | ND (2.6)               | ND (2.6)               | ND (2.6)                   | 1 -                   | ND (2.6)               | - 1                  | ND (2.6)               | 1 - 1                  | ND (2.6)               | - 1                    | ND (2.6)               | ND (2.6)                | ND (2.6)                |
| Benzene                                      | 1                                      | -                    | ND (0.21)              | -                   | ND (0.21)              | ND (0.21)              | ND (0.21)                  | -                     | ND (0.21)              | -                    | ND (0.21)              | -                      | ND (0.21)              | -                      | ND (0.21)              | ND (0.21)               | ND (0.21)               |
| Bromochloromethane                           | -                                      | -                    | ND (0.49)              | -                   | ND (0.49)              | ND (0.49)              | ND (0.49)                  | -                     | ND (0.49)              | -                    | ND (0.49)              | -                      | ND (0.49)              | -                      | ND (0.49)              | ND (0.49)               | ND (0.49)               |
| Bromodichloromethane                         | 1                                      | -                    | ND (0.28)              | -                   | ND (0.28)              | ND (0.28)              | ND (0.28)                  | -                     | ND (0.28)              | -                    | ND (0.28)              | -                      | ND (0.28)              | -                      | ND (0.28)              | ND (0.28)               | ND (0.28)               |
| Bromoform                                    | 4                                      | -                    | ND (0.31)              | -                   | ND (0.31)              | ND (0.31)              | ND (0.31)                  | -                     | ND (0.31)              | -                    | ND (0.31)              | -                      | ND (0.31)              | -                      | ND (0.31)              | ND (0.31)               | ND (0.31)               |
| Bromomethane<br>2-Butanone (MEK)             | 10<br>300                              | -                    | ND (0.39)<br>ND (2.5)  | -                   | ND (0.39)<br>ND (2.5)  | ND (0.39)<br>ND (2.5)  | ND (0.39)<br>ND (2.5)      | -                     | ND (0.39)<br>ND (2.5)  | -                    | ND (0.39)<br>ND (2.5)  | -                      | ND (0.39)<br>ND (2.5)  | -                      | ND (0.39)<br>ND (2.5)  | ND (0.39)<br>ND (2.5)   | ND (0.39)<br>ND (2.5)   |
| Carbon disulfide                             | 700                                    | -                    | ND (0.50)              | -                   | ND (0.50)              | ND (0.50)              | ND (0.50)                  | -                     | ND (0.50)              | -                    | ND (0.50)              | -                      | ND (0.50)              | -                      | ND (0.50)              | ND (0.50)               | ND (0.50)               |
| Carbon tetrachloride                         | 1                                      | -                    | ND (0.24)              | -                   | ND (0.24)              | ND (0.24)              | ND (0.24)                  | -                     | ND (0.24)              | -                    | ND (0.24)              | -                      | ND (0.24)              | -                      | ND (0.24)              | ND (0.24)               | ND (0.24)               |
| Chlorobenzene                                | 50                                     | -                    | ND (0.27)              | -                   | ND (0.27)              | ND (0.27)              | ND (0.27)                  | -                     | ND (0.27)              | -                    | ND (0.27)              | -                      | ND (0.27)              | -                      | ND (0.27)              | ND (0.27)               | ND (0.27)               |
| Chloroethane                                 | -                                      | -                    | ND (0.56)              | -                   | ND (0.56)              | ND (0.56)              | ND (0.56)                  | -                     | ND (0.56)              | -                    | ND (0.56)              | -                      | ND (0.56)              | -                      | ND (0.56)              | ND (0.56)               | ND (0.56)               |
| Chloroform<br>Chloromethane                  | 70                                     | -                    | ND (0.20)<br>ND (0.33) | -                   | ND (0.20)<br>ND (0.33) | ND (0.20)<br>ND (0.33) | ND (0.20)<br>ND (0.33)     | -                     | ND (0.20)<br>ND (0.33) | -                    | ND (0.20)<br>ND (0.33) | -                      | ND (0.20)<br>ND (0.33) | -                      | ND (0.20)<br>ND (0.33) | ND (0.20)<br>ND (0.33)  | 2.1<br>ND (0.33)        |
| Cyclohexane                                  |                                        | -                    | ND (0.37)              | -                   | ND (0.33)              | ND (0.37)              | ND (0.37)                  | -                     | ND (0.33)              | -                    | ND (0.33)              |                        | ND (0.37)              |                        | ND (0.33)              | ND (0.33)               | ND (0.37)               |
| 1,2-Dibromo-3-chloropropane                  | 0.02                                   | -                    | ND (1.2)               | -                   | ND (1.2)               | ND (1.2)               | ND (1.2)                   | -                     | ND (1.2)               | -                    | ND (1.2)               | -                      | ND (1.2)               | -                      | ND (1.2)               | ND (1.2)                | ND (1.2)                |
| Dibromochloromethane                         | 1                                      | -                    | ND (0.25)              | -                   | ND (0.25)              | ND (0.25)              | ND (0.25)                  | -                     | ND (0.25)              | -                    | ND (0.25)              | -                      | ND (0.25)              | -                      | ND (0.25)              | ND (0.25)               | ND (0.25)               |
| 1,2-Dibromoethane                            | 0.03                                   | -                    | ND (0.23)              | -                   | ND (0.23)              | ND (0.23)              | ND (0.23)                  | -                     | ND (0.23)              | -                    | ND (0.23)              | -                      | ND (0.23)              | -                      | ND (0.23)              | ND (0.23)               | ND (0.23)               |
| 1,2-Dichlorobenzene<br>1,3-Dichlorobenzene   | 600<br>600                             | -                    | ND (0.16)<br>ND (0.26) | -                   | ND (0.16)<br>ND (0.26) | ND (0.16)<br>ND (0.26) | ND (0.16)<br>ND (0.26)     | -                     | ND (0.16)<br>ND (0.26) | -                    | ND (0.16)<br>ND (0.26) | -                      | ND (0.16)<br>ND (0.26) | -                      | ND (0.16)<br>ND (0.26) | ND (0.16)<br>ND (0.26)  | ND (0.16)<br>ND (0.26)  |
| 1,3-Dichlorobenzene                          | 75                                     | -                    | ND (0.26)<br>ND (0.24) | -                   | ND (0.26)<br>ND (0.24) | ND (0.26)<br>ND (0.24) | ND (0.26)<br>ND (0.24)     | -                     | ND (0.26)<br>ND (0.24) | -                    | ND (0.26)<br>ND (0.24) | -                      | ND (0.26)<br>ND (0.24) | -                      | ND (0.26)<br>ND (0.24) | ND (0.26)<br>ND (0.24)  | ND (0.26)<br>ND (0.24)  |
| Dichlorodifluoromethane                      | 1000                                   | -                    | ND (0.73)              | -                   | ND (0.73)              | ND (0.73)              | ND (0.73)                  | -                     | ND (0.73)              | -                    | ND (0.73)              | -                      | ND (0.73)              | -                      | ND (0.73)              | ND (0.73)               | ND (0.73)               |
| 1,1-Dichloroethane                           | 50                                     | -                    | ND (0.35)              | -                   | ND (0.35)              | ND (0.35)              | ND (0.35)                  | -                     | ND (0.35)              | -                    | ND (0.35)              | -                      | ND (0.35)              | -                      | ND (0.35)              | ND (0.35)               | ND (0.35)               |
| 1,2-Dichloroethane                           | 2                                      | -                    | 2.1                    | -                   | ND (0.30)              | 1.4                    | 7.6                        | -                     | ND (0.30)              | -                    | ND (0.30)              | -                      | ND (0.30)              | -                      | ND (0.30)              | ND (0.30)               | 18.9                    |
| 1,1-Dichloroethene<br>cis-1,2-Dichloroethene | 70                                     | -                    | ND (0.50)<br>ND (0.33) | -                   | ND (0.50)<br>ND (0.33) | ND (0.50)<br>ND (0.33) | ND (0.50)<br><b>0.6</b>    | J -                   | ND (0.50)<br>ND (0.33) | -                    | ND (0.50)<br>ND (0.33) | -                      | ND (0.50)<br>ND (0.33) | -                      | 0.92<br>ND (0.33)      | J ND (0.50)<br>0.7      | ND (0.50)<br>J 8.2      |
| trans-1,2-Dichloroethene                     | 100                                    | -                    | 1.6                    | -                   | ND (0.51)              | ND (0.51)              | 1.3                        | -                     | ND (0.51)              | -                    | ND (0.51)              | -                      | ND (0.51)              | -                      | ND (0.51)              | ND (0.51)               | 0.9 J                   |
| 1,2-Dichloropropane                          | 1                                      | -                    | ND (0.43)              | -                   | ND (0.43)              | ND (0.43)              | ND (0.43)                  | -                     | ND (0.43)              | -                    | ND (0.43)              | -                      | ND (0.43)              | -                      | ND (0.43)              | ND (0.43)               | ND (0.43)               |
| cis-1,3-Dichloropropene                      | -                                      | -                    | ND (0.28)              | -                   | ND (0.28)              | ND (0.28)              | ND (0.28)                  | -                     | ND (0.28)              | -                    | ND (0.28)              | -                      | ND (0.28)              | -                      | ND (0.28)              | ND (0.28)               | ND (0.28)               |
| trans-1,3-Dichloropropene                    | -                                      | -                    | ND (0.32)              | -                   | ND (0.32)              | ND (0.32)              | ND (0.32)                  | -                     | ND (0.32)              | -                    | ND (0.32)              | -                      | ND (0.32)              | -                      | ND (0.32)              | ND (0.32)               | ND (0.32)               |
| 1,4-Dioxane<br>Ethylbenzene                  | 700                                    | -                    | ND (51)<br>ND (0.40)   | -                   | ND (51)<br>ND (0.40)   | ND (51)<br>ND (0.40)   | ND (51)<br>ND (0.40)       | -                     | ND (51)<br>ND (0.40)   | -                    | ND (51)<br>ND (0.40)   | -                      | ND (51)<br>ND (0.40)   | -                      | ND (51)<br>ND (0.40)   | ND (51)<br>0.98         | ND (51)<br>J ND (0.40)  |
| Freon 113                                    | -                                      | -                    | ND (0.45)              | -                   | ND (0.45)              | ND (0.45)              | ND (0.45)                  | -                     | ND (0.45)              | -                    | ND (0.45)              | -                      | ND (0.45)              | -                      | ND (0.45)              | ND (0.45)               | ND (0.45)               |
| 2-Hexanone                                   | -                                      | -                    | ND (1.7)               | -                   | ND (1.7)               | ND (1.7)               | ND (1.7)                   | -                     | ND (1.7)               | -                    | ND (1.7)               | -                      | ND (1.7)               | -                      | ND (1.7)               | ND (1.7)                | ND (1.7)                |
| Isopropylbenzene                             | 700                                    | -                    | ND (0.26)              | -                   | ND (0.26)              | ND (0.26)              | ND (0.26)                  | -                     | ND (0.26)              | -                    | ND (0.26)              | -                      | ND (0.26)              | -                      | ND (0.26)              | ND (0.26)               | ND (0.26)               |
| Methyl Acetate Methylcyclohexane             | 7000                                   | -                    | ND (3.1)<br>ND (0.22)  | -                   | ND (3.1)<br>ND (0.22)  | ND (3.1)<br>ND (0.22)  | ND (3.1)<br>ND (0.22)      | -                     | ND (3.1)<br>ND (0.22)  | -                    | ND (3.1)<br>ND (0.22)  | -                      | ND (3.1)<br>ND (0.22)  | -                      | ND (3.1)<br>ND (0.22)  | ND (3.1)<br><b>0.42</b> | ND (3.1)<br>J ND (0.22) |
| Methyl Tert Butyl Ether                      | 70                                     | -                    | ND (0.26)              | -                   | ND (0.26)              | ND (0.26)              | ND (0.26)                  | -                     | ND (0.26)              | -                    | ND (0.26)              | -                      | ND (0.26)              | -                      | ND (0.26)              | ND (0.26)               | ND (0.26)               |
| 4-Methyl-2-pentanone(MIBK)                   | -                                      | -                    | ND (1.1)               | -                   | ND (1.1)               | ND (1.1)               | ND (1.1)                   | -                     | ND (1.1)               | -                    | ND (1.1)               | -                      | ND (1.1)               | -                      | ND (1.1)               | ND (1.1)                | ND (1.1)                |
| Methylene chloride<br>Styrene                | 3<br>100                               | -                    | ND (0.81)<br>ND (0.26) | -                   | ND (0.81)<br>ND (0.26) | ND (0.81)<br>ND (0.26) | ND (0.81)<br>ND (0.26)     | -                     | ND (0.81)<br>ND (0.26) | -                    | ND (0.81)<br>ND (0.26) | -                      | ND (0.81)<br>ND (0.26) | -                      | ND (0.81)<br>ND (0.26) | ND (0.81)<br>ND (0.26)  | 18.3<br>ND (0.26)       |
| 1,1,2,2-Tetrachloroethane                    | 1                                      | -                    | ND (0.20)              | -                   | ND (0.39)              | ND (0.39)              | ND (0.20)                  | -                     | ND (0.20)              | -                    | ND (0.20)              | -                      | ND (0.39)              | -                      | ND (0.20)              | ND (0.20)               | ND (0.39)               |
| Tetrachloroethene                            | 1                                      | -                    | ND (0.35)              | -                   | ND (0.35)              | ND (0.35)              | ND (0.35)                  | -                     | ND (0.35)              | -                    | ND (0.35)              | -                      | ND (0.35)              | -                      | ND (0.35)              | ND (0.35)               | 0.42 J                  |
| Toluene<br>1,2,3-Trichlorobenzene            | 600                                    | -                    | ND (0.22)<br>ND (0.26) |                     | ND (0.22)<br>ND (0.26) | ND (0.22)<br>ND (0.26) | ND (0.22)<br>ND (0.26)     | -                     | ND (0.22)<br>ND (0.26) | -                    | ND (0.22)<br>ND (0.26) | -                      | ND (0.22)<br>ND (0.26) | -                      | ND (0.22)<br>ND (0.26) | ND (0.22)<br>ND (0.26)  | ND (0.22)<br>ND (0.26)  |
| 1,2,4-Trichlorobenzene                       | 9                                      | -                    | ND (0.22)              | -                   | ND (0.22)              | ND (0.22)              | ND (0.22)                  | -                     | ND (0.22)              | -                    | ND (0.22)              | -                      | ND (0.22)              | -                      | ND (0.22)              | ND (0.22)               | ND (0.22)               |
| 1,1,1-Trichloroethane                        | 30                                     | -                    | ND (0.32)              | -                   | 1.7                    | 2.2                    | ND (0.32)                  | -                     | ND (0.32)              | -                    | ND (0.32)              | -                      | ND (0.32)              | -                      | ND (0.32)              | ND (0.32)               | ND (0.32)               |
| 1,1,2-Trichloroethane Trichloroethene        | 3                                      | -                    | ND (0.28)<br>ND (0.25) |                     | ND (0.28)<br>ND (0.25) | ND (0.28)<br>ND (0.25) | ND (0.28)                  | -                     | ND (0.28)<br>0.52      | J -                  | ND (0.28)<br>ND (0.25) | -                      | ND (0.28)<br>ND (0.25) | -                      | ND (0.28)<br>ND (0.25) | ND (0.28)<br>0.57       | ND (0.28)<br>J 8.8      |
| Trichlorofluoromethane                       | 2000                                   |                      | ND (0.28)              | -                   | ND (0.28)              | ND (0.28)              | ND (0.28)                  | -                     | ND (0.28)              | -                    | ND (0.28)              | -                      | ND (0.28)              | -                      | ND (0.28)              | ND (0.28)               | ND (0.28)               |
| Vinyl chloride                               | 1                                      | -                    | ND (0.17)              | -                   | ND (0.17)              | ND (0.17)              | ND (0.17)                  | -                     | ND (0.17)              | -                    | ND (0.17)              | -                      | ND (0.17)              | -                      | ND (0.17)              | ND (0.17)               | ND (0.17)               |
| m,p-Xylene<br>o-Xylene                       |                                        | -                    | 1.4<br>0.77            | J -                 | ND (0.45)<br>ND (0.20) | 0.53<br>0.2            | J ND (0.45)<br>J ND (0.20) | -                     | ND (0.45)<br>ND (0.20) | -                    | ND (0.45)<br>ND (0.20) |                        | ND (0.45)<br>ND (0.20) |                        | ND (0.45)<br>ND (0.20) | 0.63<br>0.41            | J 0.79 J<br>J 0.34 J    |
| Xylene (total)                               | 1000                                   | -                    | 2.2                    | -                   | ND (0.20)              | 0.73                   | J ND (0.20)                | -                     | ND (0.20)              | -                    | ND (0.20)              | <u> </u>               | ND (0.20)              |                        | ND (0.20)              | 1                       | 1.1                     |
| Total VOCs                                   | -                                      |                      | 5.9                    |                     | 1.7                    | 4.33                   | 10.6                       |                       | 0.52                   |                      | 0                      |                        | 0                      |                        | 0.92                   | 3.67                    | 58.72                   |
| GC/MS Volatile TIC                           |                                        |                      |                        |                     |                        |                        |                            |                       |                        |                      |                        |                        |                        |                        |                        |                         |                         |
| Total TIC, Volatile                          | -                                      | - 1                  | 0                      | - 1                 | 0                      | 0                      | 0                          | -                     | 0                      | - 1                  | 0                      | - 1                    | 0                      | - 1                    | 0                      | 45.6                    | J 0                     |
| Total Alkanes                                | -                                      | -                    | 0                      | -                   | 0                      | 0                      | 0                          |                       | 0                      | -                    | 0                      | -                      | 0                      | -                      | 0                      | 12                      | <b>J</b> 0              |
| Metals Analysis                              |                                        |                      |                        |                     |                        |                        |                            |                       |                        |                      |                        |                        |                        |                        |                        |                         |                         |
| Chromium                                     | 70                                     | <10                  | 68.3                   | <10                 | - 1                    | - 1                    | <10                        | <10                   | <10                    | <10                  | <10                    | <10                    | <10                    | <10                    | - 1                    | - 1                     | -                       |
| Iron                                         | 300                                    | 309                  | -                      | 145                 | -                      | -                      | -                          | <100                  | -                      | <100                 | -                      | <100                   | -                      | <100                   | -                      | -                       | -                       |
| Sodium                                       | 50000                                  | -                    | <10000                 | -                   | -                      | -                      | 37,700                     | -                     | 15,300                 | -                    | 109,000                | -                      | 134,000                | -                      | -                      | -                       | -                       |
| General Chemistry                            |                                        |                      |                        |                     |                        |                        |                            |                       |                        |                      |                        |                        |                        |                        |                        |                         |                         |
| Solids, Total Dissolved                      | 500000                                 | - 1                  | 247,000                | - 1                 | - 1                    | - 1                    | 224,000                    | - 1                   | 132,000                |                      | 836,000                |                        | 867,000                | - 1                    | <u> </u>               | - 1                     | - 1                     |
| Sulfate                                      | 250000                                 | -                    | 76,400                 | -                   | -                      | -                      | 121,000                    | -                     | 56,400                 | -                    | 278,000                | -                      | 280,000                | -                      | -                      | -                       | -                       |
|                                              |                                        |                      |                        |                     |                        |                        |                            |                       |                        |                      |                        |                        |                        |                        |                        |                         |                         |

Notes:

ND, < Not Detected Above Detection Limits

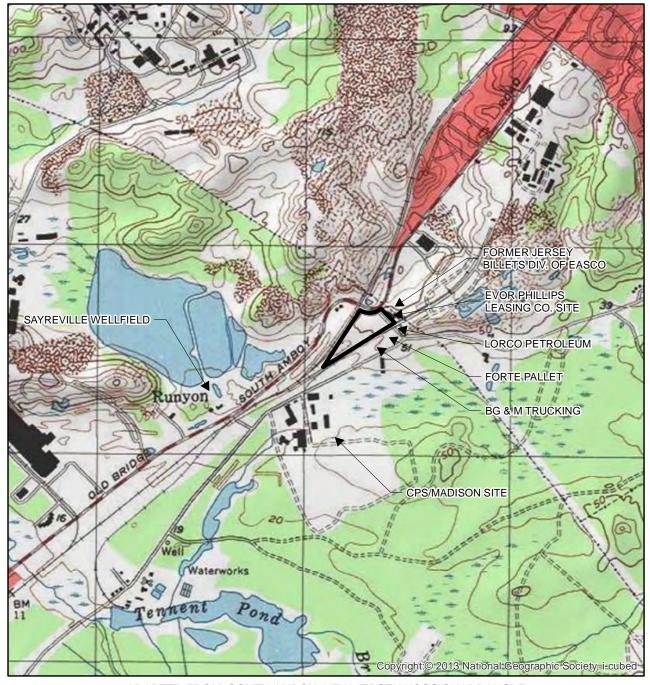
- Not Sampled

Bolded value indicates a detect above detection limits

Red bolded value indicates a detection that exceeds regulatory criteria

| Company   Comp   |                                   |           |              |           |           |           |                   |           |          |           |   |           |        |           |                     |           |                 |           |          |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------|--------------|-----------|-----------|-----------|-------------------|-----------|----------|-----------|---|-----------|--------|-----------|---------------------|-----------|-----------------|-----------|----------|-----------|
| Column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s                                 | Sample ID | NI CLASS IIA |           |           |           |                   |           |          |           |   |           |        |           |                     |           |                 |           |          |           |
| Company   Comp   |                                   |           |              |           |           |           |                   |           |          |           |   |           |        |           |                     |           |                 |           |          |           |
| Column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sam                               |           |              |           |           |           |                   |           |          |           |   |           |        |           |                     |           |                 |           |          |           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |           | ug/L         |           |           |           |                   |           |          |           |   |           |        |           |                     |           |                 |           |          |           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Volatile Organic Compounds (VOCs) | Unit      |              | ug/L      |           | ug/L      |                   | ug/L      |          | ug/L      |   | ug/L      |        | ug/L      |                     | ug/L      |                 | ug/L      |          | ug/L      |
| Property    |                                   | 1         | 6000         | 5.0       | 1.1       | 5.2       | ш                 | ND (2.6)  | -1       | ND (2.6)  |   | ND (2.6)  |        | ND (2.6)  |                     | ND (2.6)  |                 | ND (2.6)  |          | 6.6       |
| Montandame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |           |              |           | -         |           | +-                |           | $\dashv$ | . ,       |   |           | +      | . ,       | -                   | . ,       | H               | . ,       | -        |           |
| Marcheller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   | +         |              |           | +         | , ,       | +                 | . , ,     | $\dashv$ |           |   |           | +      |           | 1                   |           | H               |           | 1        | ` '       |
| December   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |           |              |           | T         |           | +                 |           | #        |           |   |           |        |           | Ħ                   |           | H               |           |          |           |
| December   Company   Com   | Bromoform                         | 1         | 4            | ND (0.31) |           | ND (0.31) | Ħ                 | ND (0.31) | T        | ND (0.31) |   | ND (0.31) | T      | ND (0.31) | T                   | ND (0.31) | Ħ               | ND (0.31) | T        | ND (0.31) |
| Stock and Stock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bromomethane                      |           | 10           | ND (0.39) |           | ND (0.39) | Ħ                 | ND (0.39) | T        | ND (0.39) |   | ND (0.39) |        | ND (0.39) |                     | ND (0.39) |                 | ND (0.39) |          | ND (0.39) |
| Control of Control o   | 2-Butanone (MEK)                  |           | 300          | ND (2.5)  |           | ND (2.5)  | Ħ                 | ND (2.5)  | T        | ND (2.5)  |   | ND (2.5)  |        | ND (2.5)  |                     | ND (2.5)  |                 | ND (2.5)  |          | ND (2.5)  |
| Commission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Carbon disulfide                  |           | 700          | ND (0.50) |           | ND (0.50) |                   | ND (0.50) |          | ND (0.50) |   | ND (0.50) |        | ND (0.50) |                     | ND (0.50) |                 | ND (0.50) |          | ND (0.50) |
| Company   Comp   | Carbon tetrachloride              |           |              | ND (0.24) |           | ND (0.24) |                   | ND (0.24) |          | ND (0.24) |   | ND (0.24) |        | ND (0.24) |                     | ND (0.24) |                 | ND (0.24) |          | ND (0.24) |
| December   70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |           | 50           | . ,       |           | . ,       |                   | . ,       |          |           |   |           |        |           |                     | , ,       |                 | . ,       |          |           |
| Commentment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |           | -            |           |           |           | $\perp$           |           | 4        |           |   |           |        |           |                     |           | Ш               |           |          |           |
| Continuemen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |           |              |           |           | . ,       | $\perp$           | . ,       | 4        | ` '       |   | . ,       | _      |           | J                   | . ,       | Ш               | . , ,     |          | . , ,     |
| 1.500mm/s-shorourser   100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |           | -            |           | +         | , ,       | +                 | . ,       | 4        |           |   |           | 4      |           | -                   |           | $\sqcup$        |           | 1        |           |
| 2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000      | ,                                 |           | - 0.03       |           | +         | . ,       | +                 | ` '       | +        | ` '       | _ | . ,       | +      | , ,       | $\dashv$            | . ,       | $\vdash$        | . , ,     | $\vdash$ | ` ′       |
| 2-500-condenders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |           |              | . ,       | +         | . ,       | +                 |           | +        | . ,       | _ |           | +      | . ,       | $\dashv$            | . ,       | $\vdash$        |           | $\vdash$ | ` '       |
| 12 Desirenterance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |           | •            |           | +         |           | +                 |           | +        |           |   |           | +      |           | $\dashv$            |           | $\vdash$        |           | +        |           |
| 13-Delinote-tourne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                 |           |              | . ,       | +         | , ,       | +                 | . ,       | +        |           |   |           | +      |           | +                   | . ,       | H               | . ,       | +        | , ,       |
| 1.6-Districtoriesment   75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                 | +         |              |           | H         | , ,       | +                 | . ,       | $\dashv$ | , ,       | 7 | . ,       | +      | , ,       | $\dashv$            | . ,       | H               | , ,       | +        | ` '       |
| Debte-containment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |           |              |           | H         |           | $\dagger \dagger$ |           | $\dashv$ |           |   |           | +      |           | $\forall$           |           | Ħ               |           | H        |           |
| 12-001-001-001-001-001-001-001-001-001-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dichlorodifluoromethane           | 1         |              | ND (0.73) |           | ND (0.73) | Ħ                 | ND (0.73) | T        | ND (0.73) |   |           | T      |           | T                   | ND (0.73) | Ħ               | ND (0.73) | T        | ND (0.73) |
| 1.0-Octoberhene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,1-Dichloroethane                |           | 50           | ND (0.35) |           | ND (0.35) |                   | ND (0.35) |          | ND (0.35) |   | ND (0.35) |        | ND (0.35) |                     | ND (0.35) |                 | ND (0.35) |          | ND (0.35) |
| Earl-2 Detrovemente   78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,2-Dichloroethane                |           | 2            | 1.2       |           | ND (0.30) |                   | ND (0.30) |          | ND (0.30) |   | ND (0.30) |        | 33.3      |                     | ND (0.30) |                 | ND (0.30) |          | 0.52      |
| Table   100   ND (0.51)   ND (0.52)   ND   | 1,1-Dichloroethene                |           |              | ND (0.50) |           | ND (0.50) |                   | ND (0.50) |          | ND (0.50) |   | ND (0.50) |        | ND (0.50) |                     |           | J               |           | J        | ND (0.50) |
| 1. DO-Dishopropropropropropropropropropropropropro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |           |              |           |           |           |                   |           |          |           |   |           |        |           |                     |           |                 |           |          |           |
| 2013-13-Orderlosprogree   -       NO (0.28)   NO (0.   |                                   |           |              | . ,       |           | , ,       |                   |           | J        |           |   |           | J      | , ,       |                     | . ,       |                 | . ,       |          | . ,       |
| Trans-1-5 Chickropopene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |           |              |           | $\perp$   |           | $\perp$           |           | 4        |           |   |           | _      |           | _                   |           | Ш               |           |          |           |
| 1-4 Decision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |           |              |           | +         |           | +                 | ` '       | 4        |           |   |           | _      |           | $\perp$             |           | Н               |           | -        |           |
| Flytherane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |           |              |           | +         | , ,       | +                 | . ,       | 4        | , ,       |   |           | _      | , ,       | $\perp$             | , ,       | Н               | . ,       | -        | . ,       |
| From 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |           |              |           | +         |           | +                 |           | +        |           |   |           | +      |           | -                   |           | H               |           | -        |           |
| 2-Hearone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | -         |              |           | +         |           | +                 |           | +        |           | - |           | +      |           | H                   |           | H               |           | $\vdash$ |           |
| Supproprietation   Topic   ND (0.26)   ND (0.27)   ND (0.28)   N   |                                   |           |              |           | +         | , ,       | +                 |           | $^{+}$   | ` '       | 1 |           | +      | , ,       | Ħ                   | , ,       | H               | , ,       | +        | ` '       |
| Methylacetate   7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |           |              |           | +         |           | +                 |           | $^{+}$   |           | 1 |           | +      |           | Ħ                   |           | H               |           | +        |           |
| Methyl Tarbuyl Effer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |           |              |           | T         | . ,       | +                 |           | #        |           |   |           |        |           | Ħ                   |           | H               |           |          |           |
| #### Methylsee pelicone   Mol.   Mol. | Methylcyclohexane                 |           | -            | ND (0.22) | T         | ND (0.22) | +                 | ND (0.22) | #        | ND (0.22) |   | ND (0.22) |        | ND (0.22) | Ħ                   | ND (0.22) | H               | ND (0.22) |          | ND (0.22) |
| Methylene chionide   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |           | 70           |           |           |           | J                 | . , ,     |          | . ,       |   | . ,       |        | , ,       |                     |           |                 | . ,       |          |           |
| Syren   100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |           | -            |           |           |           | Ш                 |           |          |           |   | . ,       |        | , ,       |                     |           | Ш               |           |          |           |
| 1,1,2,2-Fishchroroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |           |              |           | +         |           | +                 |           | 4        |           |   | , ,       | _      |           | $\perp$             |           | Н               |           | -        | , ,       |
| Introchrochene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | -         |              |           | +         |           | +                 |           | +        |           | - |           | +      |           | H                   |           | H               |           | $\vdash$ | ND (0.26) |
| 12.2-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |           | 1            |           | T         |           | T                 |           | T        |           | J |           | $\top$ |           | T                   |           | H               |           | H        | ND (0.35) |
| 12.4-Inchlorobenzene   9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Toluene                           |           | 600          | ND (0.22) |           | ND (0.22) |                   | ND (0.22) | T        | ND (0.22) |   | ND (0.22) |        | ND (0.22) |                     | ND (0.22) | Ħ               | ND (0.22) | T        | ND (0.22) |
| 11.1-inchloroesthane   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |           | -            |           | П         |           | П                 |           | 1        |           | I |           |        |           |                     |           | П               |           |          |           |
| 1,1,2-Trichloroethane 3 ND (0.28) ND |                                   |           |              |           | +         |           | +                 |           | 4        |           |   |           | +      |           | $\vdash \downarrow$ |           | $\sqcup$        |           | $\vdash$ |           |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,,                                |           |              |           | +         |           | +                 |           | +        |           | + |           | +      |           | +                   |           | H               |           | Н        |           |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • •                               | -         | 1            |           | J         |           | +                 | . ,       | J        | . ,       | 7 |           | +      | . ,       | $\dashv$            |           | J               | . ,       | J        | . ,       |
| m.p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Trichlorofluoromethane            |           | 2000         | ,         | Ħ         |           | Ţ                 |           | ╛        |           |   | ND (0.28) | ᆂ      |           |                     |           | Ħ               |           | L        | ND (0.28) |
| C-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |           |              | ,         | П         |           |                   |           | I        |           |   |           |        | , ,       |                     | , ,       | П               | . ,       |          | , ,       |
| Xylene (total)   1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |           |              |           | J         |           | +I                |           | 4        |           |   |           | _      |           | $\sqcup \downarrow$ |           | Ц               |           | $\vdash$ |           |
| Total VOCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                 |           |              |           | J         | . ,       | +                 | . ,       | +        |           | _ |           | +      | ` '       | J                   |           | $\vdash$        |           | $\vdash$ |           |
| Common                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |           | -            |           | $\forall$ |           | $\forall$         |           | $\dashv$ |           |   |           | +      |           | Ť                   |           | $\forall$       |           | +        |           |
| Total TIC, Volatile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |           |              |           |           |           |                   | L         |          |           |   |           |        |           |                     |           |                 |           | •        | L         |
| Total Alkanes - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |           |              |           |           |           |                   |           |          |           |   |           |        |           |                     |           |                 |           |          |           |
| Metals Analysis Chromium 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |           |              |           | Ш         |           | Ш                 |           | 1        |           |   | -         |        |           | J                   |           | Ш               |           | Щ        |           |
| Chromium   70   -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I otal Alkanes                    |           | -            | 0         | Ш         | 0         |                   | U         |          | U         |   | 0         |        | U         |                     | 0         |                 | 0         |          | Ü         |
| Chromium   70   -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Motals Analysis                   |           |              |           |           |           |                   |           |          |           |   |           |        |           |                     |           |                 |           |          |           |
| Iron 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   | 1         | 70           | -         |           | _         |                   | - 1       | -        | - 1       |   | - 1       |        | - 1       |                     |           |                 |           |          | - 1       |
| Sodium 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   | +         |              | -         | H         | -         | +                 |           | $\dashv$ |           | 7 |           | +      |           | $\dashv$            |           | H               | -         | +        | -         |
| Solids, Total Dissolved 500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |           |              | -         | IT        | -         |                   | <u>-</u>  |          | -         |   | -         |        | -         |                     | -         |                 | -         | L        | -         |
| Solids, Total Dissolved 500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |           |              |           |           |           |                   |           |          |           |   |           |        |           |                     |           |                 |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |           |              |           |           |           |                   |           |          |           |   |           |        |           |                     |           |                 |           |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |           |              | -         | +         | -         | +                 | -         | 4        | -         | _ | -         | +      | -         | $\dashv$            | -         | $\vdash \vdash$ | -         | $\vdash$ | -         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | ļ         | 200000       |           | Ш         |           |                   |           |          |           |   |           |        | <u> </u>  |                     |           |                 |           | L        |           |

Notes:


ND, < Not Detected Above Detection Limits

- Not Sampled

Bolded value indicates a detect above detection limits

Red bolded value indicates a detection that exceeds regulatory criteria





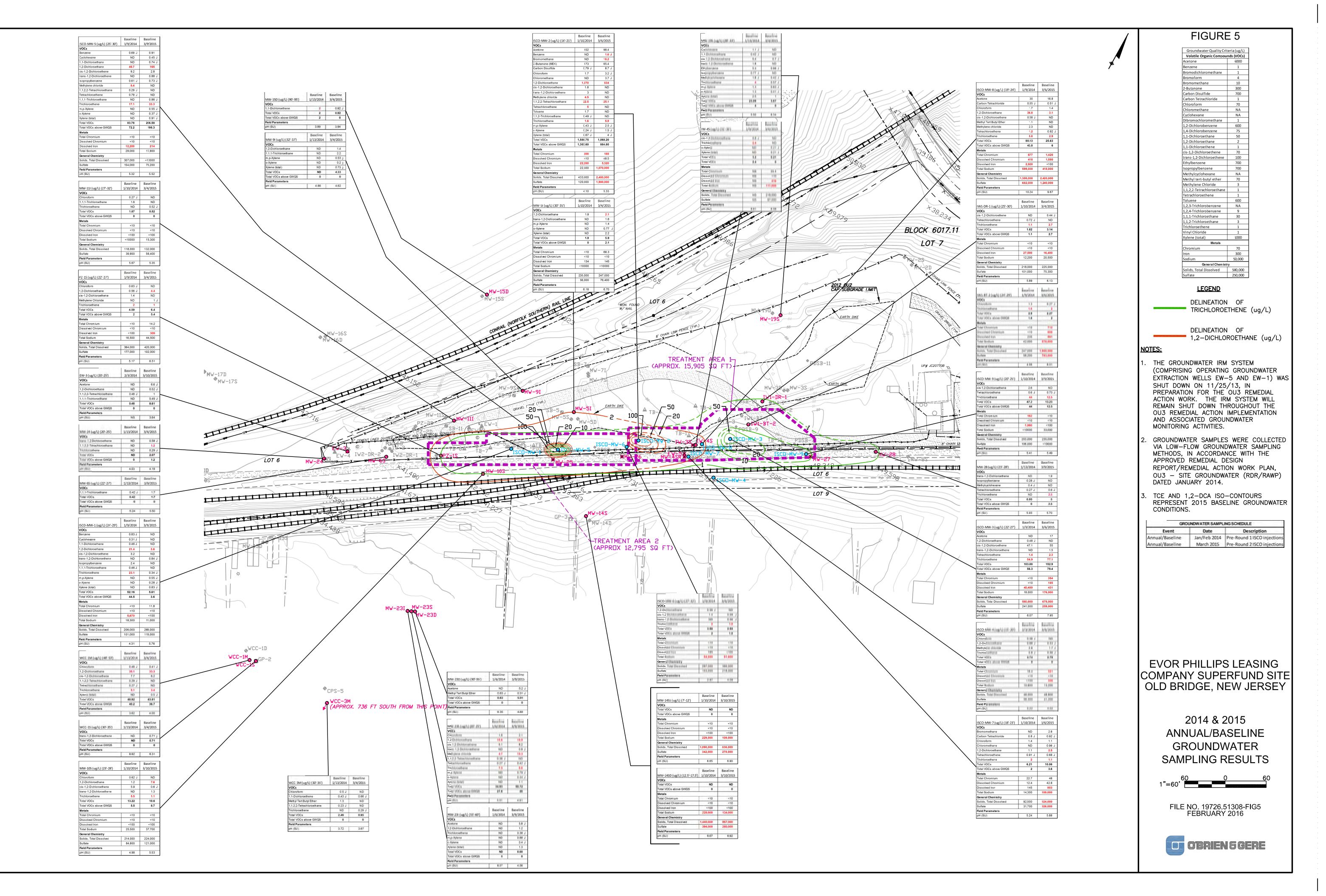
ADAPTED FROM: SOUTH AMBOY, NEW JERSEY USGS QUADRANGLE



EVOR PHILLIPS LEASING COMPANY SUPERFUND SITE OLD BRIDGE, NEW JERSEY

### SITE LOCATION






LEGEND

EXISTING CONTOUR

SANITARY SEWER MARK-OUT

FIGURE 2



# Attachment 1 Historical Groundwater Analytical Results

| Sample ID                      | NJ CLASS IIA              | MW-1S     | MW-1S      | MW-1S     | MW-1S      | MW-1S     | MW-1S      | MW-1S    | MW-1S      | MW-1S     | MW-1S      | MW-1S     | MW-1S      | MW-1S           | MW-1S      | MW-1S      | MW-4SR    | MW-4SR     |
|--------------------------------|---------------------------|-----------|------------|-----------|------------|-----------|------------|----------|------------|-----------|------------|-----------|------------|-----------------|------------|------------|-----------|------------|
| Sample Date                    |                           | 6/29/2004 | 12/20/2004 | 6/28/2005 | 12/21/2005 | 6/21/2006 | 12/20/2006 | 7/6/2007 | 12/27/2007 | 6/24/2008 | 12/19/2008 | 6/30/2009 | 12/23/2009 | 6/29/2010       | 12/16/2010 | 12/29/2011 | 6/29/2004 | 12/20/2004 |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L     | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L            | ug/L       | ug/L       | ug/L      | ug/L       |
| (VOCs)                         |                           |           | - <u></u>  |           | <u> </u>   | <i></i>   | <i></i>    | - J.     | <i></i>    |           | <i></i>    | <u> </u>  | - <u></u>  |                 | <i></i>    | <u> </u>   | <u> </u>  | J.         |
| Acetone                        | 6000                      | NA        | NA         | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA        | NA         | NA              | NA         | NA         | NA        | NA         |
| Benzene                        | 1                         | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 1 U       | 1 U        |
| Bromodichloromethane           | 1                         | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 1 U       | 1 U        |
| Bromoform                      | 4                         | 4 U       | 4 U        | 4 U       | 4 U        | 4 U       | 4 U        | 0.2 U    | 4 U        | 4 U       | 4 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 4 U       | 4 U        |
| Bromomethane                   | 10                        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        |
| 2- Butanone                    | 300                       | NA        | NA         | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA        | NA         | NA              | NA         | NA         | NA        | NA         |
| Carbon Disulfide               | 700                       | NA        | NA         | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA        | NA         | NA              | NA         | NA         | NA        | NA         |
| Carbon tetrachloride           | 1                         | 2 U       | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        | 0.3 U    | 2 U        | 2 U       | 2 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 1.8 J     | 2.8        |
| Chlorobenzene                  | 50                        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        |
| Chloroethane                   | -                         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        |
| 2-Chloroethyl vinyl ether      | -                         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        |
| Chloroform                     | 70                        | 3.6 J     | 5 U        | 2.3 J     | 5 U        | 5 U       | 5 U        | 1.5      | 0.7 J      | 2.6 J     | 2.7 J      | 1 U       | 1 U        | 0.29 J [0.28 J] | 1 U        | 1 U        | 5.3       | 5.9        |
| Chloromethane                  | -                         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        |
| Dibromochloromethane           | 1                         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        |
| 1,1-Dichloroethane             | 50                        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        |
| 1,2-Dichloroethane             | 2                         | 2 U       | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        | 0.3 U    | 2 U        | 2 U       | 2 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 54        | 49         |
| 1,1-Dichloroethene             | 1                         | 2 U       | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        | 0.5 U    | 2 U        | 2 U       | 2 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 2 U       | 2 U        |
| cis-1,2-Dichloroethene         | 70                        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        |
| trans-1,2-Dichloroethene       | 100                       | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        |
| 1,2-Dichloropropane            | 1                         | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.5 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 1 U       | 1 U        |
| cis-1,3-Dichloropropene        | -                         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.1 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        |
| trans-1,3-Dichloropropene      | -                         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        |
| Ethylbenzene                   | 700                       | 4 U       | 4 U        | 4 U       | 4 U        | 4 U       | 4 U        | 0.4 U    | 4 U        | 4 U       | 4 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 4 U       | 4 U        |
| Methyl tert-butyl ether (MTBE) | 70                        | 5 U       | 5 U        | 5 U       | 0.8 J      | 1.1 J     | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        |
| Methylene chloride             | 3                         | 3 U       | 3 U        | 3 U       | 3 U        | 3 U       | 3 U        | 0.4 U    | 3 U        | 3 U       | 3 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 1.2 J     | 0.8 J      |
| t-Butyl Alcohol (TBA)          | 100                       | 100 U     | 100 U      | 100 U     | 100 U      | 100 U     | 100 U      | 6.5 U    | 100 U      | 100 U     | 100 U      | 20 U      | 20 U       | 20 U [20 U]     | 20 U       | 20 U       | 100 U     | 100 U      |
| 1,1,2,2-Tetrachloroethane      | 1                         | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.4 U    | 1 U        | 0.8 J     | 1 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 38        | 42         |
| Tetrachloroethene              | 1                         | 1.1       | 1 U        | 1.0       | 1 U        | 1 U       | 1 U        | 0.8      | 0.5 J      | 0.5 J     | 1 U        | 1 U       | 1 U        | 0.30 J [0.44 J] | 1 U        | 1 U        | 3.5       | 4          |
| Toluene                        | 600                       | 5 U       | 1.3 J      | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 0.29 J     | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 0.6 J      |
| 1,1,1-Trichloroethane          | 30                        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        |
| 1,1,2-Trichloroethane          | 3                         | 3 U       | 3 U        | 3 U       | 3 U        | 3 U       | 3 U        | 0.2 U    | 3 U        | 3 U       | 3 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 3 U       | 3 U        |
| Trichloroethene                | 1                         | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 5.4       | 7.2        |
| Trichlorofluoromethane         | 2000                      | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        |
| Vinyl chloride                 | 1                         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        |
| Xylene (total)                 | 1000                      | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 3 U       | 3 U        | 3 U [3 U]       | 3 U        | 3 U        | 5 U       | 5 U        |
| Total VOCs                     | -                         | 4.7 J     | 1.3 J      | 3.3 J     | 0.8 J      | 1.1 J     | ND         | 2.3      | 1.2 J      | 3.9 J     | 2.7 J      | ND        | 0.29 J     | 0.59 J [0.72 J] | ND         | ND         | 109 J     | 112 J      |

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds

regulatory criteria Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 1 of 26

| Sample II                      | NJ CLASS IIA              | MW-4SR    | MW-4SR     | MW-4SR    | MW-4SR     | MW-4SR   | MW-4SR     | MW-4SR    | MW-4SR             | MW-4SR    | MW-4SR     | MW-4SR    | MW-4SR           | MW-4SR          | MW-4SR           | MW-4SR              | MW-5I     |
|--------------------------------|---------------------------|-----------|------------|-----------|------------|----------|------------|-----------|--------------------|-----------|------------|-----------|------------------|-----------------|------------------|---------------------|-----------|
| Sample Date                    | GROUNDWATER QUALITY       | 6/28/2005 | 12/21/2005 | 6/21/2006 | 12/20/2006 | 7/6/2007 | 12/27/2007 | 6/24/2008 | 12/19/2008         | 6/30/2009 | 12/23/2009 | 6/29/2010 | 12/16/2010       | 12/29/2011      | 7/10/2012        | 12/20/2012          | 6/29/2004 |
| Uni                            | CRITERIA (7/22/2010) ug/L | ug/L      | ug/L       | ug/L      | ug/L       | ug/L     | ug/L       | ug/L      | ug/L               | ug/L      | ug/L       | ug/L      | ug/L             | ug/L            | ug/L             | ug/L                | ug/L      |
| (VOCs)                         |                           | W5/ =     |            | W5/ =     |            | W5/ =    |            | 6/-       | u <sub>5</sub> / = | 6/-       |            |           | ~6/ <del>-</del> | ug/ <u>2</u>    | ~6/ <del>-</del> | <b>46/2</b>         | -5/ -     |
| Acetone                        | 6000                      | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA                 | NA        | NA         | NA        | NA               | NA              | 5 U              | 5 U [5 U]           | NA        |
| Benzene                        | 1                         | 1 U       | 1 U        | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U                | 1 U       | 1 U        | 1 U       | 1 U [1 U]        | 1 U [1 U]       | 1 U              | 1 U [1 U]           | 0.6 J     |
| Bromodichloromethane           | 1                         | 1 U       | 1 U        | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U                | 1 U       | 1 U        | 1 U       | 1 U [1 U]        | 1 U [1 U]       | 1 U              | 1 U [1 U]           | 1 U       |
| Bromoform                      | 4                         | 4 U       | 4 U        | 4 U       | 4 U        | 0.2 U    | 4 U        | 4 U       | 4 U                | 1 U       | 1 U        | 1 U       | 1 U [1 U]        | 1 U [1 U]       | NA               | NA [NA]             | 4 U       |
| Bromomethane                   | 10                        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U                | 1 U       | 1 U        | 1 U       | 1 U [1 U]        | 0.85 J [0.84 J] | NA               | NA [NA]             | 5 U       |
| 2- Butanone                    | 300                       | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA                 | NA        | NA         | NA        | NA               | NA              | 5 U              | 5 U [5 U]           | NA        |
| Carbon Disulfide               | 700                       | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA                 | NA        | NA         | NA        | NA               | NA              | 1 U              | 1 U [1 U]           | NA        |
| Carbon tetrachloride           | 1                         | 1.1 J     | 2.0        | 1.5 J     | 2.0        | 0.6      | 0.9 J      | 2.1       | 3.5                | 2.8       | 1.9        | 0.47 J    | 1.0 [1.1]        | 1 U [0.84 J]    | 0.54 J           | 0.79 J [0.68 J]     | 2 U       |
| Chlorobenzene                  | 50                        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U                | 1 U       | 1 U        | 1 U       | 1 U [1 U]        | 1 U [1 U]       | NA               | NA [NA]             | 5 U       |
| Chloroethane                   | -                         | 5 U       | 5 U        | 5U        | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U                | 1 U       | 1 U        | 1 U       | 1 U [1 U]        | 1 U [1 U]       | 1 U              | 1 U [1 U]           | 5 U       |
| 2-Chloroethyl vinyl ether      | -                         | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U                | 1 U       | 1 U        | 1 U       | 1 U [1 U]        | 1 U [1 U]       | NA               | NA [NA]             | 5 U       |
| Chloroform                     | 70                        | 4.2 J     | 4.6 J      | 4.9 J     | 4.8 J      | 2.7      | 3.0 J      | 4.8 J     | 5.3                | 5.3       | 2.6        | 1.7       | 3.1 [2.9]        | 3.0 [3.0]       | 2.2              | 3 [2.7]             | 5 U       |
| Chloromethane                  | -                         | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U                | 1 U       | 1 U        | 1 U       | 1 U [1 U]        | 1 U [1 U]       | NA               | NA [NA]             | 5 U       |
| Dibromochloromethane           | 1                         | 5 U       | 5 U        | 5 U       | 6 U        | 0.3 U    | 5 U        | 5 U       | 5 U                | 1 U       | 1 U        | 1 U       | 1 U [1 U]        | 1 U [1 U]       | 1 U              | 1 U [1 U]           | 5 U       |
| 1,1-Dichloroethane             | 50                        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U                | 1 U       | 1 U        | 1 U       | 1 U [1 U]        | 1 U [1 U]       | 1 U              | 1 U [1 U]           | 5 U       |
| 1,2-Dichloroethane             | 2                         | 81        | 69         | 63        | 46         | 95       | 110        | 80        | 32                 | 28        | 5.2        | 30        | 72 [67]          | 37 [37]         | 45               | 130 [120]           | 1.7 J     |
| 1,1-Dichloroethene             | 1                         | 2 U       | 2 U        | 2 U       | 2 U        | 0.5 U    | 2 U        | 2 U       | 2 U                | 1 U       | 1 U        | 1 U       | 1 U [1 U]        | 1 U [1 U]       | 1 U              | 1 U [1 U]           | 2 U       |
| cis-1,2-Dichloroethene         | 70                        | 0.7 J     | 5 U        | 0.5 J     | 5 U        | 1.2      | 0.6 J      | 5 U       | 5 U                | 1 U       | 1 U        | 1.1       | 0.36 J [0.38 J]  | 1 U [1 U]       | 0.49 J           | 0.35 J [0.37 J]     | 5 U       |
| trans-1,2-Dichloroethene       | 100                       | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U                | 1 U       | 1 U        | 1 U       | 1 U [1 U]        | 1 U [1 U]       | 1 U              | 1 U [1 U]           | 5 U       |
| 1,2-Dichloropropane            | 1                         | 1 U       | 1 U        | 1 U       | 1 U        | 0.5 U    | 1 U        | 1 U       | 1 U                | 1 U       | 1 U        | 1 U       | 1 U [1 U]        | 1 U [1 U]       | NA               | NA [NA]             | 1 U       |
| cis-1,3-Dichloropropene        | -                         | 5 U       | 5 U        | 5 U       | 5 U        | 0.1 U    | 5 U        | 5 U       | 5 U                | 1 U       | 1 U        | 1 U       | 1 U [1 U]        | 1 U [1 U]       | NA               | NA [NA]             | 5 U       |
| trans-1,3-Dichloropropene      | -                         | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U                | 1 U       | 1 U        | 1 U       | 1 U [1 U]        | 1 U [1 U]       | NA               | NA [NA]             | 5 U       |
| Ethylbenzene                   | 700                       | 4 U       | 4 U        | 4 U       | 4 U        | 0.4 U    | 4 U        | 4 U       | 4 U                | 1 U       | 1 U        | 1 U       | 1 U [1 U]        | 1 U [1 U]       | 1 U              | 1 U [1 U]           | 4 U       |
| Methyl tert-butyl ether (MTBE) | 70                        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U                | 1 U       | 1 U        | 1 U       | 1 U [1 U]        | 1 U [1 U]       | 1 U              | 1 U [1 U]           | 5 U       |
| Methylene chloride             | 3                         | 3 U       | 3 U        | 0.6 J     | 0.6 J      | 1.1      | 3 U        | 3 U       | 0.6 J              | 1 U       | 0.24 J     | 1 U       | 0.61 J [0.93 J]  | 0.37 J [0.46 J] | 1 U              | 1.1 [0.94 J]        | 3 U       |
| t-Butyl Alcohol (TBA)          | 100                       | 100 U     | 100 U      | 100 U     | 100 U      | 6.5 U    | 100 U      | 100 U     | 100 U              | 20 U      | 20 U       | 20 U      | 20 U [20 U]      | 20 U [20 U]     | NA               | NA [NA]             | 100 U     |
| 1,1,2,2-Tetrachloroethane      | 1                         | 38        | 36         | 45        | 64         | 20       | 29         | 42        | 4.8                | 28        | 2.7        | 9.7       | 10 [12]          | 13 [13]         | 9.1              | 20 [18]             | 1 U       |
| Tetrachloroethene              | 1                         | 2.4       | 2.9        | 3.2       | 4.5        | 1.7      | 2.5        | 3.1       | 3.1                | 4.9       | 1.6        | 1.0       | 2.1 [1.9]        | 0.99 J [1.0]    | 0.84 J           | 1.8 [1.5]           | 1 U       |
| Toluene                        | 600                       | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U                | 1 U       | 1 U        | 1 U       | 1 U [1 U]        | 1 U [1 U]       | 1 U              | 1 U [1 U]           | 5 U       |
| 1,1,1-Trichloroethane          | 30                        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U                | 1 U       | 1 U        | 1 U       | 1 U [1 U]        | 1 U [1 U]       | 1 U              | 1 U [1 U]           | 5 U       |
| 1,1,2-Trichloroethane          | 3                         | 0.6 J     | 3 U        | 0.6 J     | 0.6 J      | 0.6      | 0.5 J      | 0.4 J     | 3 U                | 1 U       | 1 U        | 0.22 J    | 1 U [1 U]        | 0.15 J [0.23 J] | 0.27 J           | 0.32 J [1 U]        | 3 U       |
| Trichloroethene                | 1                         | 6.6       | 4.2        | 5.6       | 6.6        | 6.2      | 4.7        | 4.7       | 4.3                | 4.6       | 3.3        | 4.7       | 3.2 [3.2]        | 1 U [1 U]       | 3.4              | 3.1 [2.9]           | 0.5 J     |
| Trichlorofluoromethane         | 2000                      | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U                | 1 U       | 1 U        | 1 U       | 1 U [1 U]        | 3.1 [3.0]       | NA               | NA [NA]             | 5 U       |
| Vinyl chloride                 | 1                         | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U                | 1 U       | 1 U        | 1 U       | 1 U [1 U]        | 1 U [1 U]       | 1 U              | 1 U [1 U]           | 5 U       |
| Xylene (total)                 | 1000                      | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U                | 3 U       | 3 U        | 3 U       | 3 U [3 U]        | 3 U [3 U]       | 3 U              | 3 U [3 U]           | 5 U       |
| Total VOCs                     | -                         | 134.6 J   | 118.7 J    | 124.9 J   | 129.1 J    | 129.1 J  | 151.2 J    | 137.1 J   | 53.6               | 73.6 J    | 17.5 J     | 49.9 J    | 92.4 J [89.4 J]  | 58.5 J [59.4 J] | 61.84 J          | 160.46 J [147.09 J] | 2.8 J     |

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds regulatory criteria

Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 2 of 26

| Sample ID                      | NJ CLASS IIA              | MW-5I      | MW-5I     | MW-5I      | MW-5I     | MW-5I      | MW-5I    | MW-5I      | MW-5I     | MW-5I      | MW-5I     | MW-5I      | MW-5I     | MW-5I      | MW-5I      | MW-5I     | MW-5I           | MW-6S     |
|--------------------------------|---------------------------|------------|-----------|------------|-----------|------------|----------|------------|-----------|------------|-----------|------------|-----------|------------|------------|-----------|-----------------|-----------|
| Sample Date                    | GROUNDWATER QUALITY       | 12/20/2004 | 6/28/2005 | 12/21/2005 | 6/21/2006 | 12/20/2006 | 7/6/2007 | 12/27/2007 | 6/24/2008 | 12/19/2008 | 6/30/2009 | 12/23/2009 | 6/29/2010 | 12/16/2010 | 12/29/2011 | 7/10/2012 | 12/20/2012      | 6/29/2004 |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L     | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L       | ug/L      | ug/L            | ug/L      |
| (VOCs)                         |                           |            |           |            |           |            |          |            |           |            |           |            |           |            |            |           |                 |           |
| Acetone                        | 6000                      | NA         | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA        | NA         | NA        | NA         | NA         | 5 U       | 5 U [5 U]       | NA        |
| Benzene                        | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.2      | 1 U        | 1 U       | 1 U        | 1 U       | 0.22 J     | 1 U       | 1 U        | 0.15 J     | 0.14 J    | 0.13 J [0.14 J] | 1 U       |
| Bromodichloromethane           | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U [1 U]       | 1 U       |
| Bromoform                      | 4                         | 4 U        | 4 U       | 4 U        | 4 U       | 4 U        | 0.2 U    | 4 U        | 4 U       | 4 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA [NA]         | 4 U       |
| Bromomethane                   | 10                        | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA [NA]         | 5 U       |
| 2- Butanone                    | 300                       | NA         | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA        | NA         | NA        | NA         | NA         | 5 U       | 5 U [5 U]       | NA        |
| Carbon Disulfide               | 700                       | NA         | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA        | NA         | NA        | NA         | NA         | 1 U       | 1 U [1 U]       | NA        |
| Carbon tetrachloride           | 1                         | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        | 0.3 U    | 2 U        | 2 U       | 2 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U [1 U]       | 2 U       |
| Chlorobenzene                  | 50                        | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA [NA]         | 5 U       |
| Chloroethane                   | -                         | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U [1 U]       | 5 U       |
| 2-Chloroethyl vinyl ether      | -                         | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA [NA]         | 5 U       |
| Chloroform                     | 70                        | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U [1 U]       | 2 J       |
| Chloromethane                  | -                         | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA [NA]         | 5 U       |
| Dibromochloromethane           | 1                         | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U [1 U]       | 5 U       |
| 1,1-Dichloroethane             | 50                        | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U [1 U]       | 5 U       |
| 1,2-Dichloroethane             | 2                         | 2.1        | 2 U       | 2 U        | 0.7 J     | 0.7 J      | 2.9      | 2 U        | 2 U       | 2 U        | 1.3       | 1.3        | 1.9       | 1.3        | 2.4        | 1.5       | 1.7 [1.9]       | 32        |
| 1,1-Dichloroethene             | 1                         | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        | 0.5 U    | 2 U        | 2 U       | 2 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U [1 U]       | 2 U       |
| cis-1,2-Dichloroethene         | 70                        | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.6      | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.38 J     | 1 U       | 1 U [1 U]       | 2.2 J     |
| trans-1,2-Dichloroethene       | 100                       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U [1 U]       | 5 U       |
| 1,2-Dichloropropane            | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.5 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA [NA]         | 1 U       |
| cis-1,3-Dichloropropene        | -                         | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.1 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA [NA]         | 5 U       |
| trans-1,3-Dichloropropene      | -                         | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA [NA]         | 5 U       |
| Ethylbenzene                   | 700                       | 4 U        | 4 U       | 4 U        | 4 U       | 4 U        | 0.4 U    | 4 U        | 4 U       | 4 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U [1 U]       | 4 U       |
| Methyl tert-butyl ether (MTBE) | 70                        | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U [1 U]       | 5 U       |
| Methylene chloride             | 3                         | 3 U        | 3 U       | 3 U        | 3 U       | 3 U        | 0.4 U    | 3 U        | 3 U       | 3 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U [1 U]       | 27        |
| t-Butyl Alcohol (TBA)          | 100                       | 100 U      | 100 U     | 100 U      | 100 U     | 100 U      | 6.5 U    | 100 U      | 100 U     | 100 U      | 20 U      | 20 U       | 20 U      | 20 U       | 20 U       | NA        | NA [NA]         | 100 U     |
| 1,1,2,2-Tetrachloroethane      | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U [1 U]       | 1 U       |
| Tetrachloroethene              | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U [1 U]       | 1 U       |
| Toluene                        | 600                       | 2.7 J      | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1.3        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U [1 U]       | 5 U       |
| 1,1,1-Trichloroethane          | 30                        | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U [1 U]       | 5 U       |
| 1,1,2-Trichloroethane          | 3                         | 3 U        | 3 U       | 3 U        | 3 U       | 3 U        | 0.2 U    | 3 U        | 3 U       | 3 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U [1 U]       | 3 U       |
| Trichloroethene                | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.4      | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U [1 U]       | 4.4       |
| Trichlorofluoromethane         | 2000                      | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA [NA]         | 5 U       |
| Vinyl chloride                 | 1                         | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U [1 U]       | 5 U       |
| Xylene (total)                 | 1000                      | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 3 U       | 3 U        | 3 U       | 3 U        | 3 U        | 3 U       | 3 U [3 U]       | 5 U       |
| Total VOCs                     | -                         | 4.8 J      | ND        | ND         | 0.7 J     | 0.7 J      | 4.1      | ND         | ND        | ND         | 1.3       | 2.8 J      | 1.9       | 1.3        | 2.9 J      | 1.64 J    | 1.83 J [2.04 J] | 67.6 J    |

### Notes:

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds regulatory criteria

Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 3 of 26

| Sample ID                      | NJ CLASS IIA              | MW-6S      | MW-6S     | MW-6S      | MW-6S     | MW-6S      | MW-6S    | MW-6S      | MW-6S     | MW-6S      | MW-6S     | MW-6S      | MW-6S     | MW-6S       | MW-6S         | MW-6S     | MW-6S      | MW-7I     |
|--------------------------------|---------------------------|------------|-----------|------------|-----------|------------|----------|------------|-----------|------------|-----------|------------|-----------|-------------|---------------|-----------|------------|-----------|
| Sample Date                    | GROUNDWATER QUALITY       | 12/20/2004 | 6/28/2005 | 12/21/2005 | 6/21/2006 | 12/20/2006 | 7/6/2007 | 12/27/2007 | 6/24/2008 | 12/19/2008 | 6/30/2009 | 12/23/2009 | 6/30/2010 | 12/16/2010  | 12/29/2011    | 7/10/2012 | 12/20/2012 | 6/29/2004 |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L     | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L        | ug/L          | ug/L      | ug/L       | ug/L      |
| (VOCs)                         |                           |            | -6/ -     | 0, -       | -0/-      |            | 0/       | 6/-        | -6/-      | -6/ -      | -0, -     | 6/ -       | -0, -     | 6/ -        |               |           | -6/ -      | -87 -     |
| Acetone                        | 6000                      | NA         | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA        | NA         | NA        | NA          | NA            | 5 U       | 5 U        | NA        |
| Benzene                        | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U       | 0.14 J     | 1 U       | 1 U [1 U]   | 1 U [1 U]     | 1 U       | 1 U        | 1 U       |
| Bromodichloromethane           | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]   | 1 U [1 U]     | 0.66 J    | 1 U        | 1 U       |
| Bromoform                      | 4                         | 4 U        | 4 U       | 4 U        | 4 U       | 4 U        | 0.2 U    | 4 U        | 4 U       | 4 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]   | 1 U [1 U]     | NA        | NA         | 4 U       |
| Bromomethane                   | 10                        | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]   | 1 U [1 U]     | NA        | NA         | 5 U       |
| 2- Butanone                    | 300                       | NA         | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA        | NA         | NA        | NA          | NA            | 5 U       | 5 U        | NA        |
| Carbon Disulfide               | 700                       | NA         | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA        | NA         | NA        | NA          | NA            | 1 U       | 1 U        | NA        |
| Carbon tetrachloride           | 1                         | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        | 0.3 U    | 2 U        | 2 U       | 2 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]   | 1 U [1 U]     | 1 U       | 1 U        | 2 U       |
| Chlorobenzene                  | 50                        | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]   | 1 U [1 U]     | NA        | NA         | 5 U       |
| Chloroethane                   | -                         | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]   | 1 U [1 U]     | 1 U       | 1 U        | 5 U       |
| 2-Chloroethyl vinyl ether      | -                         | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | NA         | 1 U       | 1 U [1 U]   | 1 U [1 U]     | NA        | NA         | 5 U       |
| Chloroform                     | 70                        | 2.1 J      | 2.4 J     | 2.0 J      | 1.8 J     | 1.8 J      | 1.3      | 0.9 J      | 0.9 J     | 5 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]   | 1 U [1 U]     | 1.4       | 1 U        | 5 U       |
| Chloromethane                  | -                         | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1.2        | 4.0       | 1 U [1 U]   | 1 U [1 U]     | NA        | NA         | 5 U       |
| Dibromochloromethane           | 1                         | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]   | 1 U [1 U]     | 1 U       | 1 U        | 5 U       |
| 1,1-Dichloroethane             | 50                        | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]   | 1 U [1 U]     | 1 U       | 1 U        | 5 U       |
| 1,2-Dichloroethane             | 2                         | 29         | 35        | 32         | 28        | 44         | 24       | 20         | 25        | 2 U        | 1 U       | 0.32 J     | 1.0       | 1 U [1 U]   | 1 U [1 U]     | 1 U       | 1 U        | 2 U       |
| 1,1-Dichloroethene             | 1                         | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        | 0.5 U    | 2 U        | 2 U       | 2 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]   | 1 U [1 U]     | 1 U       | 1 U        | 2 U       |
| cis-1,2-Dichloroethene         | 70                        | 2.2 J      | 3.5 J     | 8.9        | 13        | 100        | 18       | 17         | 12        | 5 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]   | 1 U [1 U]     | 1 U       | 1 U        | 5 U       |
| trans-1,2-Dichloroethene       | 100                       | 5 U        | 5 U       | 5 U        | 5 U       | 0.6 J      | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]   | 1 U [1 U]     | 1 U       | 1 U        | 5 U       |
| 1,2-Dichloropropane            | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.5 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]   | 1 U [1 U]     | NA        | NA         | 1 U       |
| cis-1,3-Dichloropropene        | -                         | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.1 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]   | 1 U [1 U]     | NA        | NA         | 5 U       |
| trans-1,3-Dichloropropene      | -                         | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]   | 1 U [1 U]     | NA        | NA         | 5 U       |
| Ethylbenzene                   | 700                       | 4 U        | 4 U       | 4 U        | 4 U       | 4 U        | 0.4 U    | 4 U        | 4 U       | 4 U        | 1 U       | 0.29 J     | 1 U       | 1 U [1 U]   | 1 U [1 U]     | 1 U       | 1 U        | 4 U       |
| Methyl tert-butyl ether (MTBE) | 70                        | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | NA         | 1 U       | 1 U [1 U]   | 1 U [1 U]     | 1 U       | 1 U        | 5 U       |
| Methylene chloride             | 3                         | 24         | 18        | 16         | 12        | 16         | 10       | 6.2        | 5.8       | 3 U        | 1 U       | 0.26 J     | 0.71 J    | 1 U [1 U]   | 1 U [1 U]     | 1 U       | 1 U        | 3 U       |
| t-Butyl Alcohol (TBA)          | 100                       | 100 U      | 100 U     | 100 U      | 100 U     | 100 U      | 6.5 U    | 100 U      | 100 U     | 100 U      | 20 U      | NA         | 20 U      | 20 U [20 U] | 2.7 J [3.3 J] | NA        | NA         | 100 U     |
| 1,1,2,2-Tetrachloroethane      | 1                         | 1 U        | 1 U       | 0.6 J      | 1 U       | 1.1        | 0.4      | 0.4 J      | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]   | 1 U [1 U]     | 1 U       | 1 U        | 1 U       |
| Tetrachloroethene              | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.5      | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]   | 1 U [1 U]     | 0.44 J    | 0.25 J     | 1 U       |
| Toluene                        | 600                       | 1.8 J      | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1.7        | 1 U       | 1 U [1 U]   | 1 U [1 U]     | 0.7 J     | 1 U        | 5 U       |
| 1,1,1-Trichloroethane          | 30                        | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]   | 1 U [1 U]     | 0.18 J    | 1 U        | 5 U       |
| 1,1,2-Trichloroethane          | 3                         | 3 U        | 3 U       | 3 U        | 3 U       | 3 U        | 0.2 U    | 3 U        | 3 U       | 3 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]   | 1 U [1 U]     | 1 U       | 1 U        | 3 U       |
| Trichloroethene                | 1                         | 2.6        | 4.0       | 5.4        | 5.3       | 20         | 5.7      | 6.9        | 6.0       | 1 U        | 1 U       | 0.26 J     | 1 U       | 1 U [1 U]   | 1 U [1 U]     | 0.2 J     | 0.49 J     | 1 U       |
| Trichlorofluoromethane         | 2000                      | 5 U        | 5 U       | 5 U        | 1.6 J     | 5 U        | 0.5      | 0.8 J      | 5 U       | 5 U        | 1 U       | NA         | 1 U       | 1 U [1 U]   | 1 U [1 U]     | NA        | NA         | 5 U       |
| Vinyl chloride                 | 1                         | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]   | 1 U [1 U]     | 1 U       | 1 U        | 5 U       |
| Xylene (total)                 | 1000                      | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 3 U       | 0.74 J     | 3 U       | 3 U [3 U]   | 3 U [3 U]     | 3 U       | 3 U        | 5 U       |
| Total VOCs                     | -                         | 61.7 J     | 62.9 J    | 64.9 J     | 61.7 J    | 183.5 J    | 60.4     | 52.2 J     | 49.7 J    | ND         | ND        | 4.9 J      | 5.7 J     | ND [ND]     | 2.7 J [3.3 J] | 3.58 J    | 0.74 J     | ND        |

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds

regulatory criteria Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 4 of 26

| Sample ID                      | NJ CLASS IIA              | MW-7I      | MW-7I     | MW-7I      | MW-7I     | MW-7I      | MW-7I    | MW-7I      | MW-7I     | MW-7I      | MW-7I     | MW-7I      | MW-7I     | MW-7I      | MW-7I      | MW-8S     | MW-8S      | MW-8S     |
|--------------------------------|---------------------------|------------|-----------|------------|-----------|------------|----------|------------|-----------|------------|-----------|------------|-----------|------------|------------|-----------|------------|-----------|
| Sample Date                    | GROUNDWATER QUALITY       | 12/20/2004 | 6/28/2005 | 12/21/2005 | 6/21/2006 | 12/20/2006 | 7/6/2007 | 12/27/2007 | 6/24/2008 | 12/19/2008 | 6/30/2009 | 12/23/2009 | 6/29/2010 | 12/16/2010 | 12/29/2011 | 6/29/2004 | 12/20/2004 | 6/28/2005 |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L     | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L       | ug/L      | ug/L       | ug/L      |
| (VOCs)                         |                           |            |           |            |           |            |          |            |           |            |           |            |           |            |            |           |            |           |
| Acetone                        | 6000                      | NA         | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA        | NA         | NA        | NA         | NA         | NA        | NA         | NA        |
| Benzene                        | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       |
| Bromodichloromethane           | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       |
| Bromoform                      | 4                         | 4 U        | 4 U       | 4 U        | 4 U       | 4 U        | 0.2 U    | 4 U        | 4 U       | 4 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 4 U       | 4 U        | 4 U       |
| Bromomethane                   | 10                        | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       |
| 2- Butanone                    | 300                       | NA         | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA        | NA         | NA        | NA         | NA         | NA        | NA         | NA        |
| Carbon Disulfide               | 700                       | NA         | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA        | NA         | NA        | NA         | NA         | NA        | NA         | NA        |
| Carbon tetrachloride           | 1                         | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        | 0.3 U    | 2 U        | 2 U       | 2 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 2 U       | 2 U        | 2 U       |
| Chlorobenzene                  | 50                        | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       |
| Chloroethane                   | -                         | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       |
| 2-Chloroethyl vinyl ether      | -                         | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       |
| Chloroform                     | 70                        | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       |
| Chloromethane                  | -                         | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       |
| Dibromochloromethane           | 1                         | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       |
| 1,1-Dichloroethane             | 50                        | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 0.9 J      | 5 U       |
| 1,2-Dichloroethane             | 2                         | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        | 0.3 U    | 2 U        | 2 U       | 2 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 2 U       | 2 U        | 2 U       |
| 1,1-Dichloroethene             | 1                         | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        | 0.5 U    | 2 U        | 2 U       | 2 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 2 U       | 2 U        | 2 U       |
| cis-1,2-Dichloroethene         | 70                        | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       |
| trans-1,2-Dichloroethene       | 100                       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       |
| 1,2-Dichloropropane            | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.5 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       |
| cis-1,3-Dichloropropene        | -                         | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.1 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       |
| trans-1,3-Dichloropropene      | -                         | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       |
| Ethylbenzene                   | 700                       | 4 U        | 4 U       | 4 U        | 4 U       | 4 U        | 0.4 U    | 4 U        | 4 U       | 4 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 4 U       | 4 U        | 4 U       |
| Methyl tert-butyl ether (MTBE) | 70                        | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       |
| Methylene chloride             | 3                         | 3 U        | 3 U       | 3 U        | 3 U       | 3 U        | 0.4 U    | 3 U        | 3 U       | 3 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 3 U       | 3 U        | 3 U       |
| t-Butyl Alcohol (TBA)          | 100                       | 100 U      | 100 U     | 100 U      | 100 U     | 100 U      | 6.5 U    | 100 U      | 100 U     | 100 U      | 20 U      | 20 U       | 20 U      | 20 U       | 20 U       | 100 U     | 100 U      | 100 U     |
| 1,1,2,2-Tetrachloroethane      | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       |
| Tetrachloroethene              | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       |
| Toluene                        | 600                       | 1.6 J      | 5 U       | 5 U        | 3.1 J     | 5 U        | 0.3 U    | 0.4 J      | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 1.8 J      | 0.4 J     |
| 1,1,1-Trichloroethane          | 30                        | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       |
| 1,1,2-Trichloroethane          | 3                         | 3 U        | 3 U       | 3 U        | 3 U       | 3 U        | 0.2 U    | 3 U        | 3 U       | 3 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 3 U       | 3 U        | 3 U       |
| Trichloroethene                | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       |
| Trichlorofluoromethane         | 2000                      | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       |
| Vinyl chloride                 | 1                         | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       |
| Xylene (total)                 | 1000                      | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 3 U       | 3 U        | 3 U       | 3 U        | 3 U        | 5 U       | 1.5 J      | 0.9 J     |
| Total VOCs                     | -                         | 1.6 J      | ND        | ND         | 3.1 J     | ND         | ND       | 0.4 J      | ND        | ND         | ND        | ND         | ND        | ND         | ND         | ND        | 4.2 J      | 1.3 J     |

### Notes:

U Not Detected Above Detection Limits
-- Not Sampled
Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds regulatory criteria

Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 5 of 26

| Sample ID                      | NJ CLASS IIA              | MW-8S      | MW-8S     | MW-8S      | MW-8S    | MW-8S      | MW-8S     | MW-8S      | MW-8S     | MW-8S                                        | MW-8S     | MW-8S      | MW-8S           | MW-9I     | MW-9I         | MW-9I         | MW-9I      | MW-9I     |
|--------------------------------|---------------------------|------------|-----------|------------|----------|------------|-----------|------------|-----------|----------------------------------------------|-----------|------------|-----------------|-----------|---------------|---------------|------------|-----------|
| Sample Date                    |                           | 12/21/2005 | 6/21/2006 | 12/20/2006 | 7/6/2007 | 12/27/2007 | 6/24/2008 | 12/19/2008 | 6/30/2009 | 12/23/2009                                   | 6/29/2010 | 12/16/2010 | 12/29/2011      | 6/29/2004 | 12/20/2004    | 6/28/2005     | 12/21/2005 | 6/21/2006 |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L       | ug/L      | ug/L       | ug/L     | ug/L       | ug/L      | ug/L       | ug/L      | ug/L                                         | ug/L      | ug/L       | ug/L            | ug/L      | ug/L          | ug/L          | ug/L       | ug/L      |
| (VOCs)                         |                           | <u> </u>   | - U       |            | - J,     | · 0,       | <u> </u>  | · 0,       |           | <u>.                                    </u> |           |            | <u></u>         | <u> </u>  |               |               |            |           |
| Acetone                        | 6000                      | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA        | NA                                           | NA        | NA         | NA              | NA        | NA            | NA            | NA         | NA        |
| Benzene                        | 1                         | 1 U        | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 1 U       | 1 U [1 U]     | 0.5 J [1 U]   | 1 U        | 1 U       |
| Bromodichloromethane           | 1                         | 1 U        | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 1 U       | 1 U [1 U]     | 1 U [1 U]     | 1 U        | 1 U       |
| Bromoform                      | 4                         | 4 U        | 4 U       | 4 U        | 0.2 U    | 4 U        | 4 U       | 4 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 4 U       | 4 U [4 U]     | 4 U [4 U]     | 4 U        | 4 U       |
| Bromomethane                   | 10                        | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 5 U       | 5 U [5 U]     | 5 U [5 U]     | 5 U        | 5 U       |
| 2- Butanone                    | 300                       | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA        | NA                                           | NA        | NA         | NA              | NA        | NA            | NA            | NA         | NA        |
| Carbon Disulfide               | 700                       | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA        | NA                                           | NA        | NA         | NA              | NA        | NA            | NA            | NA         | NA        |
| Carbon tetrachloride           | 1                         | 2 U        | 2 U       | 2 U        | 0.3 U    | 2 U        | 2 U       | 2 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 2 U       | 2 U [2 U]     | 2 U [2 U]     | 2 U        | 2 U       |
| Chlorobenzene                  | 50                        | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 5 U       | 5 U [5 U]     | 5 U [5 U]     | 5 U        | 5 U       |
| Chloroethane                   | -                         | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 5 U       | 5 U [5 U]     | 5 U [5 U]     | 5 U        | 5 U       |
| 2-Chloroethyl vinyl ether      | -                         | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | NA        | NA                                           | NA        | NA         | 1 U [1 U]       | 5 U       | 5 U [5 U]     | 5 U [5 U]     | 5 U        | 5 U       |
| Chloroform                     | 70                        | 5 U        | 5 U       | 5 U        | 0.2 U    | 1.2 J      | 5 U       | 2.3 J      | 1 U       | 0.90 J                                       | 1 U       | 1 U        | 1 U [1 U]       | 5 U       | 5 U [5 U]     | 5 U [5 U]     | 5 U        | 5 U       |
| Chloromethane                  | -                         | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 5 U       | 5 U [5 U]     | 5 U [5 U]     | 5 U        | 5 U       |
| Dibromochloromethane           | 1                         | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 5 U       | 5 U [5 U]     | 5 U [5 U]     | 5 U        | 5 U       |
| 1,1-Dichloroethane             | 50                        | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 5 U       | 5 U [5 U]     | 5 U [5 U]     | 5 U        | 5 U       |
| 1,2-Dichloroethane             | 2                         | 2 U        | 2 U       | 2 U        | 0.3 U    | 2 U        | 2 U       | 2 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 2.1       | 0.9 J [0.8 J] | 0.7 J [2 U]   | 2 U        | 2 U       |
| 1,1-Dichloroethene             | 1                         | 2 U        | 2 U       | 2 U        | 0.5 U    | 2 U        | 2 U       | 2 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 2 U       | 2 U [2 U]     | 2 U [2 U]     | 2 U        | 2 U       |
| cis-1,2-Dichloroethene         | 70                        | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 0.3 J      | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 5 U       | 5 U [5 U]     | 5 U [5 U]     | 5 U        | 5 U       |
| trans-1,2-Dichloroethene       | 100                       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 5 U       | 5 U [5 U]     | 5 U [5 U]     | 5 U        | 5 U       |
| 1,2-Dichloropropane            | 1                         | 1 U        | 1 U       | 1 U        | 0.5 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 1 U       | 1 U [1 U]     | 1 U [1 U]     | 1 U        | 1 U       |
| cis-1,3-Dichloropropene        | -                         | 5 U        | 5 U       | 5 U        | 0.1 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 5 U       | 5 U [5 U]     | 5 U [5 U]     | 5 U        | 5 U       |
| trans-1,3-Dichloropropene      | -                         | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 5 U       | 5 U [5 U]     | 5 U [5 U]     | 5 U        | 5 U       |
| Ethylbenzene                   | 700                       | 4 U        | 4 U       | 4 U        | 0.4 U    | 4 U        | 4 U       | 4 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 4 U       | 4 U [4 U]     | 4 U [4 U]     | 4 U        | 4 U       |
| Methyl tert-butyl ether (MTBE) | 70                        | 5 U        | 0.6 J     | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | NA                                           | 1 U       | 1 U        | 1 U [1 U]       | 5 U       | 5 U [5 U]     | 5 U [5 U]     | 5 U        | 5 U       |
| Methylene chloride             | 3                         | 3 U        | 3 U       | 3 U        | 0.4 U    | 3 U        | 3 U       | 3 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 1.5 J     | 0.6 J [0.6 J] | 3 U [3 U]     | 3 U        | 3 U       |
| t-Butyl Alcohol (TBA)          | 100                       | 100 U      | 100 U     | 100 U      | 6.5 U    | 100 U      | 100 U     | 100 U      | 20 U      | NA                                           | 20 U      | 20 U       | 20 U [20 U]     | 100 U     | 100 U [100 U] | 100 U [100 U] | 100 U      | 100 U     |
| 1,1,2,2-Tetrachloroethane      | 1                         | 1 U        | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 1 U       | 1 U [1 U]     | 1 U [1 U]     | 1 U        | 1 U       |
| Tetrachloroethene              | 1                         | 1 U        | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 1 U       | 1 U [1 U]     | 1 U [1 U]     | 1 U        | 1 U       |
| Toluene                        | 600                       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 0.31 J                                       | 1 U       | 1 U        | 1 U [1 U]       | 5 U       | 2.4 J [2.3 J] | 5 U [5 U]     | 5 U        | 5 U       |
| 1,1,1-Trichloroethane          | 30                        | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 5 U       | 5 U [5 U]     | 5 U [5 U]     | 5 U        | 5 U       |
| 1,1,2-Trichloroethane          | 3                         | 3 U        | 3 U       | 3 U        | 0.2 U    | 3 U        | 3 U       | 3 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 3 U       | 3 U [3 U]     | 3 U [3 U]     | 3 U        | 3 U       |
| Trichloroethene                | 1                         | 0.6 J      | 0.4 J     | 0.6 J      | 0.4 U    | 0.5 J      | 1 U       | 1 U        | 1 U       | 0.43 J                                       | 1 U       | 0.49 J     | 1 U [1 U]       | 0.9 J     | 1 U [1 U]     | 1 U [1 U]     | 1 U        | 1 U       |
| Trichlorofluoromethane         | 2000                      | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | NA        | NA                                           | NA        | NA         | 0.24 J [0.24 J] | 5 U       | 5 U [5 U]     | 5 U [5 U]     | 5 U        | 5 U       |
| Vinyl chloride                 | 1                         | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U                                          | 1 U       | 1 U        | 1 U [1 U]       | 5 U       | 5 U [5 U]     | 5 U [5 U]     | 5 U        | 5 U       |
| Xylene (total)                 | 1000                      | 1.1 J      | 1.7 J     | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 3 U       | 3 U                                          | 3 U       | 0.47 J     | 3 U [3 U]       | 5 U       | 5 U [5 U]     | 5 U [5 U]     | 5 U        | 5 U       |
| Total VOCs                     | -                         | 1.7 J      | 2.7 J     | 0.6 J      | ND       | 1.7 J      | ND        | 2.6 J      | ND        | 1.6 J                                        | ND        | 0.96 J     | 0.24 J [0.24 J] | 4.5 J     | 3.9 J [3.7 J] | 1.2 J [ND]    | ND         | ND        |

### Notes:

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds

regulatory criteria Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 6 of 26

| Sample ID                      | NJ CLASS IIA              | MW-9I      | MW-9I        | MW-9I        | MW-9I     | MW-9I              | MW-9I        | MW-9I              | MW-9I     | MW-9I      | MW-9I        | MW-9I              | MW-9I              | MW-10S       | MW-10S     | MW-10S    | MW-10S     | MW-10S       |
|--------------------------------|---------------------------|------------|--------------|--------------|-----------|--------------------|--------------|--------------------|-----------|------------|--------------|--------------------|--------------------|--------------|------------|-----------|------------|--------------|
| Sample Date                    | GROUNDWATER QUALITY       | 12/20/2006 | 7/6/2007     | 12/27/2007   | 6/24/2008 | 12/19/2008         | 6/30/2009    | 12/23/2009         | 6/29/2010 | 12/16/2010 | 12/29/2011   | 7/11/2012          | 12/20/2012         | 6/29/2004    | 12/20/2004 | 6/28/2005 | 12/21/2005 | 6/21/2006    |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L       | ug/L         | ug/L         | ug/L      | ug/L               | ug/L         | ug/L               | ug/L      | ug/L       | ug/L         | ug/L               | ug/L               | ug/L         | ug/L       | ug/L      | ug/L       | ug/L         |
| (VOCs)                         |                           |            | -5/ <u>-</u> | ~6/ <b>=</b> |           | w <sub>6</sub> / = | -5/ <u>-</u> | w <sub>6</sub> / = |           |            | -5/ <u>-</u> | w <sub>6</sub> / = | u <sub>5</sub> / = | ~6/ <b>-</b> |            | W8/ =     |            | -5/ <u>-</u> |
| Acetone                        | 6000                      | NA         | NA           | NA           | NA        | NA                 | NA           | NA                 | NA        | NA         | NA           | 5 U                | 5 U                | NA           | NA         | NA        | NA         | NA           |
| Benzene                        | 1                         | 1 U        | 2.5          | 1 U          | 1 U       | 1 U                | 1 U          | 0.22 J             | 1 U       | 1 U        | 1 U          | 0.3 J              | 0.31 J             | 1 U          | 1 U        | 1 U       | 1 U        | 1 U          |
| Bromodichloromethane           | 1                         | 1 U        | 0.2 U        | 1 U          | 1 U       | 1 U                | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | 1 U                | 1 U                | 1 U          | 1 U        | 1 U       | 1 U        | 1 U          |
| Bromoform                      | 4                         | 4 U        | 0.2 U        | 4 U          | 4 U       | 4 U                | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | NA                 | NA                 | 4 U          | 4 U        | 4 U       | 4 U        | 4 U          |
| Bromomethane                   | 10                        | 5 U        | 0.4 U        | 5 U          | 5 U       | 5 U                | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | NA                 | NA                 | 5 U          | 5 U        | 5 U       | 5 U        | 5 U          |
| 2- Butanone                    | 300                       | NA         | NA           | NA           | NA        | NA                 | NA           | NA                 | NA        | NA         | NA           | 5 U                | 5 U                | NA           | NA         | NA        | NA         | NA           |
| Carbon Disulfide               | 700                       | NA         | NA           | NA           | NA        | NA                 | NA           | NA                 | NA        | NA         | NA           | 1 U                | 1 U                | NA           | NA         | NA        | NA         | NA           |
| Carbon tetrachloride           | 1                         | 2 U        | 0.3 U        | 2 U          | 2 U       | 2 U                | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | 1 U                | 1 U                | 1.3 J        | 0.9 J      | 2 U       | 0.9 J      | 2 U          |
| Chlorobenzene                  | 50                        | 5 U        | 0.2 U        | 5 U          | 5 U       | 5 U                | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | NA                 | NA                 | 5 U          | 5 U        | 5 U       | 5 U        | 5 U          |
| Chloroethane                   | -                         | 5 U        | 0.4 U        | 5 U          | 5 U       | 5 U                | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | 1 U                | 1 U                | 5 U          | 5 U        | 5 U       | 5 U        | 5 U          |
| 2-Chloroethyl vinyl ether      | -                         | 5 U        | 0.2 U        | 5 U          | 5 U       | 5 U                | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | NA                 | NA                 | 5 U          | 5 U        | 5 U       | 5 U        | 5 U          |
| Chloroform                     | 70                        | 5 U        | 0.3          | 5 U          | 0.3 J     | 0.3 J              | 1 U          | 0.21 J             | 0.26 J    | 1 U        | 1 U          | 0.17 J             | 0.15 J             | 8.5          | 2.3 J      | 1.1 J     | 2.6 J      | 1.1 J        |
| Chloromethane                  | -                         | 5 U        | 0.4 U        | 5 U          | 5 U       | 5 U                | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | NA                 | NA                 | 5 U          | 5 U        | 5 U       | 5 U        | 5 U          |
| Dibromochloromethane           | 1                         | 5 U        | 0.3 U        | 5 U          | 5 U       | 5 U                | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | 1 U                | 1 U                | 5 U          | 5 U        | 5 U       | 5 U        | 5 U          |
| 1,1-Dichloroethane             | 50                        | 5 U        | 0.3 U        | 5 U          | 5 U       | 5 U                | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | 1 U                | 1 U                | 5 U          | 5 U        | 5 U       | 5 U        | 5 U          |
| 1,2-Dichloroethane             | 2                         | 0.7 J      | 1.3          | 0.4 J        | 0.4 J     | 2 U                | 1 U          | 1 U                | 1.7       | 1 U        | 0.51 J       | 1.3                | 0.54 J             | 3.6          | 2.0        | 2 U       | 2 U        | 2 U          |
| 1,1-Dichloroethene             | 1                         | 2 U        | 0.5 U        | 2 U          | 2 U       | 2 U                | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | 1 U                | 1 U                | 2 U          | 2 U        | 2 U       | 2 U        | 2 U          |
| cis-1,2-Dichloroethene         | 70                        | 5 U        | 0.3 U        | 5 U          | 5 U       | 5 U                | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | 1 U                | 1 U                | 8.1          | 2.7 J      | 1.4 J     | 4.8 J      | 2.0 J        |
| trans-1,2-Dichloroethene       | 100                       | 5 U        | 0.4 U        | 5 U          | 5 U       | 5 U                | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | 1 U                | 1 U                | 5 U          | 5 U        | 5 U       | 5 U        | 5 U          |
| 1,2-Dichloropropane            | 1                         | 1 U        | 0.5 U        | 1 U          | 1 U       | 1 U                | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | NA                 | NA                 | 1 U          | 1 U        | 1 U       | 1 U        | 1 U          |
| cis-1,3-Dichloropropene        | -                         | 5 U        | 0.1 U        | 5 U          | 5 U       | 5 U                | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | NA                 | NA                 | 5 U          | 5 U        | 5 U       | 5 U        | 5 U          |
| trans-1,3-Dichloropropene      | -                         | 5 U        | 0.2 U        | 5 U          | 5 U       | 5 U                | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | NA                 | NA                 | 5 U          | 5 U        | 5 U       | 5 U        | 5 U          |
| Ethylbenzene                   | 700                       | 4 U        | 0.4 U        | 4 U          | 4 U       | 4 U                | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | 1 U                | 1 U                | 4 U          | 4 U        | 4 U       | 4 U        | 4 U          |
| Methyl tert-butyl ether (MTBE) | 70                        | 5 U        | 0.3 U        | 5 U          | 5 U       | 5 U                | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | 1 U                | 1 U                | 5 U          | 1.1 J      | 5 U       | 5 U        | 5 U          |
| Methylene chloride             | 3                         | 3 U        | 0.4 U        | 3 U          | 3 U       | 0.3 J              | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | 1 U                | 1 U                | 3 U          | 3 U        | 3 U       | 3 U        | 3 U          |
| t-Butyl Alcohol (TBA)          | 100                       | 100 U      | 6.5 U        | 100 U        | 100 U     | 100 U              | 20 U         | 20 U               | 20 U      | 20 U       | 20 U         | NA                 | NA                 | 100 U        | 100 U      | 100 U     | 100 U      | 100 U        |
| 1,1,2,2-Tetrachloroethane      | 1                         | 1 U        | 0.4 U        | 1 U          | 1 U       | 1 U                | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | 1 U                | 1 U                | 1 U          | 0.7 J      | 1 U       | 1 U        | 1 U          |
| Tetrachloroethene              | 1                         | 1 U        | 0.4 U        | 1 U          | 1 U       | 1 U                | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | 1 U                | 1 U                | 1 U          | 1 U        | 1 U       | 1 U        | 1 U          |
| Toluene                        | 600                       | 5 U        | 0.3 U        | 5 U          | 5 U       | 5 U                | 1 U          | 1.0                | 1 U       | 1 U        | 1 U          | 1 U                | 1 U                | 5 U          | 0.5 J      | 5 U       | 5 U        | 5 U          |
| 1,1,1-Trichloroethane          | 30                        | 5 U        | 0.4 U        | 5 U          | 5 U       | 5 U                | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | 1 U                | 1 U                | 0.6 J        | 5 U        | 5 U       | 5 U        | 5 U          |
| 1,1,2-Trichloroethane          | 3                         | 3 U        | 0.2 U        | 3 U          | 3 U       | 3 U                | 1 U          | 1 U                | 1 U       | 1 U        | 1 U          | 1 U                | 1 U                | 3 U          | 3 U        | 3 U       | 3 U        | 3 U          |
| Trichloroethene                | 1                         | 1 U        | 1.2          | 1 U          | 1 U       | 1 U                | 1 U          | 1 U                | 1.4       | 1 U        | 1 U          | 0.51 J             | 1 U                | 3.3          | 1.0        | 1 U       | 1.1        | 0.8 J        |
| Trichlorofluoromethane         | 2000                      | 5 U        | 0.4 U        | 5 U          | 5 U       | 5 U                | 1 U          | 0.43 J             | 1 U       | 1 U        | 0.27 J       | NA                 | NA                 | 5 U          | 5 U        | 5 U       | 5 U        | 5 U          |
| Vinyl chloride                 | 1                         | 5 U        | 0.2 U        | 5 U          | 5 U       | 5 U                | 1 U          | 1 U                | 1 U       | 1 U        | 0.22 J       | 1 U                | 1 U                | 5 U          | 5 U        | 5 U       | 5 U        | 5 U          |
| Xylene (total)                 | 1000                      | 5 U        | 0.4 U        | 5 U          | 5 U       | 5 U                | 3 U          | 0.46 J             | 3 U       | 3 U        | 3 U          | 3 U                | 3 U                | 5 U          | 5 U        | 5 U       | 5 U        | 5 U          |
| Total VOCs                     | -                         | 0.7 J      | 5.3          | 0.4 J        | 0.7 J     | 0.6 J              | ND           | 2.3 J              | 3.4 J     | ND         | 1.0 J        | 2.28 J             | 1.0 J              | 25.4 J       | 11.2 J     | 2.5 J     | 9.4 J      | 3.9 J        |

### Notes:

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds regulatory criteria

Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 7 of 26

| Sample ID                      | NJ CLASS IIA              | MW-10S     | MW-10S   | MW-10S     | MW-10S    | MW-10S     | MW-10S    | MW-10S     | MW-10S    | MW-10S     | MW-10S     | MW-10S    | MW-10S     | MW-11I    | MW-11I     | MW-11I    | MW-11I     | MW-11I    |
|--------------------------------|---------------------------|------------|----------|------------|-----------|------------|-----------|------------|-----------|------------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|
| Sample Date                    | GROUNDWATER QUALITY       | 12/20/2006 | 7/6/2007 | 12/27/2007 | 6/24/2008 | 12/19/2008 | 6/30/2009 | 12/23/2009 | 6/30/2010 | 12/16/2010 | 12/29/2011 | 7/11/2012 | 12/20/2012 | 6/29/2004 | 12/20/2004 | 6/28/2005 | 12/21/2005 | 6/21/2006 |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L       | ug/L     | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      |
| (VOCs)                         |                           |            |          |            |           |            |           |            |           |            |            |           |            |           |            |           |            |           |
| Acetone                        | 6000                      | NA         | NA       | NA         | NA        | NA         | NA        | NA         | NA        | NA         | NA         | 5 U       | 5 U        | NA        | NA         | NA        | NA         | NA        |
| Benzene                        | 1                         | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 0.17 J    | 0.088 J    | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       |
| Bromodichloromethane           | 1                         | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 0.6 J     | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       |
| Bromoform                      | 4                         | 4 U        | 0.2 U    | 4 U        | 4 U       | 4 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 4 U       | 4 U        | 4 U       | 4 U        | 4 U       |
| Bromomethane                   | 10                        | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| 2- Butanone                    | 300                       | NA         | NA       | NA         | NA        | NA         | NA        | NA         | NA        | NA         | NA         | 5 U       | 5 U        | NA        | NA         | NA        | NA         | NA        |
| Carbon Disulfide               | 700                       | NA         | NA       | NA         | NA        | NA         | NA        | NA         | NA        | NA         | NA         | 1 U       | 1 U        | NA        | NA         | NA        | NA         | NA        |
| Carbon tetrachloride           | 1                         | 2 U        | 0.3 U    | 2.8        | 2 U       | 0.7 J      | 1 U       | 1 U        | 1 U       | 0.84 J     | 1 U        | 1 U       | 0.29 J     | 2 U       | 2 U        | 2 U       | 2 U        | 2 U       |
| Chlorobenzene                  | 50                        | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| Chloroethane                   | -                         | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| 2-Chloroethyl vinyl ether      | -                         | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | NA         | 1 U       | NA         | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| Chloroform                     | 70                        | 5 U        | 1.3      | 6.0        | 5 U       | 4.2 J      | 1 U       | 0.51 J     | 0.26 J    | 3.9        | 0.29 J     | 1.4       | 1.2        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| Chloromethane                  | -                         | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| Dibromochloromethane           | 1                         | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 0.31 J    | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| 1,1-Dichloroethane             | 50                        | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| 1,2-Dichloroethane             | 2                         | 2 U        | 0.3 U    | 1.3 J      | 2 U       | 2.3        | 0.9 J     | 16         | 2.9       | 6.2        | 13         | 1 U       | 1.4        | 2 U       | 2 U        | 2 U       | 2 U        | 2 U       |
| 1,1-Dichloroethene             | 1                         | 2 U        | 0.5 U    | 2 U        | 2 U       | 2 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 2 U       | 2 U        | 2 U       | 2 U        | 2 U       |
| cis-1,2-Dichloroethene         | 70                        | 5 U        | 2.2      | 3 J        | 5 U       | 2.9 J      | 1 U       | 1.4        | 0.77 J    | 11         | 1.9        | 1 U       | 1.3        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| trans-1,2-Dichloroethene       | 100                       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| 1,2-Dichloropropane            | 1                         | 1 U        | 0.5 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       |
| cis-1,3-Dichloropropene        | -                         | 5 U        | 0.1 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| trans-1,3-Dichloropropene      | -                         | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| Ethylbenzene                   | 700                       | 4 U        | 0.4 U    | 4 U        | 4 U       | 4 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 4 U       | 4 U        | 4 U       | 4 U        | 4 U       |
| Methyl tert-butyl ether (MTBE) | 70                        | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | NA         | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| Methylene chloride             | 3                         | 3 U        | 0.4 U    | 0.3 J      | 3 U       | 3 U        | 1 U       | 0.56 J     | 1 U       | 0.86 J     | 0.41 J     | 1 U       | 1 U        | 3 U       | 3 U        | 3 U       | 3 U        | 3 U       |
| t-Butyl Alcohol (TBA)          | 100                       | 100 U      | 6.5 U    | 100 U      | 100 U     | 100 U      | 20 U      | NA         | 20 U      | 20 U       | 20 U       | NA        | NA         | 100 U     | 100 U      | 100 U     | 100 U      | 100 U     |
| 1,1,2,2-Tetrachloroethane      | 1                         | 1 U        | 0.4 U    | 1.8        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 0.25 J     | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       |
| Tetrachloroethene              | 1                         | 1 U        | 0.4 U    | 0.6 J      | 1 U       | 1 U        | 1 U       | 0.22 J     | 1 U       | 0.39 J     | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       |
| Toluene                        | 600                       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 0.8 J      | 5 U       | 5 U        | 5 U       |
| 1,1,1-Trichloroethane          | 30                        | 5 U        | 0.4 U    | 5 U        | 5 U       | 0.4 J      | 1 U       | 0.32 J     | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| 1,1,2-Trichloroethane          | 3                         | 3 U        | 0.2 U    | 3 U        | 3 U       | 3 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 3 U       | 3 U        | 3 U       | 3 U        | 3 U       |
| Trichloroethene                | 1                         | 1 U        | 1.2      | 2.5        | 1 U       | 3.9        | 0.48 J    | 5.4        | 3.4       | 9.8        | 1 U        | 0.12 J    | 1.8        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       |
| Trichlorofluoromethane         | 2000                      | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 6.5        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 1.4 J     |
| Vinyl chloride                 | 1                         | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| Xylene (total)                 | 1000                      | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 3 U       | 3 U        | 3 U       | 3 U        | 3 U        | 3 U       | 3 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| Total VOCs                     | -                         | ND         | 4.7      | 18.3 J     | ND        | 14.4 J     | 1.4 J     | 24.4 J     | 7.3 J     | 33.2 J     | 22.1 J     | 2.6 J     | 6.08 J     | ND        | 0.8 J      | ND        | ND         | 1.4 J     |

### Notes:

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds

regulatory criteria Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 8 of 26

| Sample ID                      | NJ CLASS IIA              | MW-11I     | MW-11I   | MW-11I     | MW-11I    | MW-11I     | MW-11I    | MW-11I     | MW-11I    | MW-11I     | MW-11I     | MW-11I    | MW-11I     | MW-13S    | MW-13S     | MW-13S    | MW-13S     | MW-13S    |
|--------------------------------|---------------------------|------------|----------|------------|-----------|------------|-----------|------------|-----------|------------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|
| Sample Date                    | GROUNDWATER QUALITY       | 12/20/2006 | 7/6/2007 | 12/27/2007 | 6/24/2008 | 12/19/2008 | 6/30/2009 | 12/23/2009 | 6/29/2010 | 12/16/2010 | 12/29/2011 | 7/10/2012 | 12/20/2012 | 6/29/2004 | 12/21/2004 | 6/28/2005 | 12/21/2005 | 6/21/2006 |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L       | ug/L     | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      |
| (VOCs)                         |                           |            |          |            |           |            |           | <u> </u>   |           |            |            |           |            |           |            |           |            |           |
| Acetone                        | 6000                      | NA         | NA       | NA         | NA        | NA         | NA        | NA         | NA        | NA         | NA         | 5 U       | 5 U        | NA        | NA         | NA        | NA         | NA        |
| Benzene                        | 1                         | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1.5        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       |
| Bromodichloromethane           | 1                         | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       |
| Bromoform                      | 4                         | 4 U        | 0.2 U    | 4 U        | 4 U       | 4 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 4 U       | 4 U        | 4 U       | 4 U        | 4 U       |
| Bromomethane                   | 10                        | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| 2- Butanone                    | 300                       | NA         | NA       | NA         | NA        | NA         | NA        | NA         | NA        | NA         | NA         | 5 U       | 5 U        | NA        | NA         | NA        | NA         | NA        |
| Carbon Disulfide               | 700                       | NA         | NA       | NA         | NA        | NA         | NA        | NA         | NA        | NA         | NA         | 1 U       | 1 U        | NA        | NA         | NA        | NA         | NA        |
| Carbon tetrachloride           | 1                         | 2 U        | 0.3 U    | 2 U        | 2 U       | 2 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 2 U       | 2 U        | 2 U       | 2 U        | 2 U       |
| Chlorobenzene                  | 50                        | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| Chloroethane                   | -                         | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| 2-Chloroethyl vinyl ether      | -                         | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| Chloroform                     | 70                        | 5 U        | 0.2 U    | 5 U        | 5 U       | 0.2 J      | 1 U       | 0.68 J     | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| Chloromethane                  | -                         | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| Dibromochloromethane           | 1                         | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| 1,1-Dichloroethane             | 50                        | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| 1,2-Dichloroethane             | 2                         | 2 U        | 0.3 U    | 2 U        | 2 U       | 2 U        | 1 U       | 0.29 J     | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 2 U       | 2 U        | 2 U       | 2 U        | 2 U       |
| 1,1-Dichloroethene             | 1                         | 2 U        | 0.5 U    | 2 U        | 2 U       | 2 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 2 U       | 2 U        | 2 U       | 2 U        | 2 U       |
| cis-1,2-Dichloroethene         | 70                        | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| trans-1,2-Dichloroethene       | 100                       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| 1,2-Dichloropropane            | 1                         | 1 U        | 0.5 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       |
| cis-1,3-Dichloropropene        | -                         | 5 U        | 0.1 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| trans-1,3-Dichloropropene      | -                         | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| Ethylbenzene                   | 700                       | 4 U        | 0.4 U    | 4 U        | 4 U       | 4 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 4 U       | 4 U        | 4 U       | 4 U        | 4 U       |
| Methyl tert-butyl ether (MTBE) | 70                        | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.7 J     |
| Methylene chloride             | 3                         | 3 U        | 0.4 U    | 3 U        | 3 U       | 3 U        | 4.3       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 3 U       | 3 U        | 3 U       | 3 U        | 3 U       |
| t-Butyl Alcohol (TBA)          | 100                       | 100 U      | 6.5 U    | 100 U      | 100 U     | 100 U      | 20 U      | 20 U       | 20 U      | 20 U       | 20 U       | NA        | NA         | 100 U     | 100 U      | 100 U     | 100 U      | 100 U     |
| 1,1,2,2-Tetrachloroethane      | 1                         | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       |
| Tetrachloroethene              | 1                         | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       |
| Toluene                        | 600                       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 0.30 J     | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 0.8 J     | 5 U        | 5 U       |
| 1,1,1-Trichloroethane          | 30                        | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| 1,1,2-Trichloroethane          | 3                         | 3 U        | 0.2 U    | 3 U        | 3 U       | 3 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 3 U       | 3 U        | 3 U       | 3 U        | 3 U       |
| Trichloroethene                | 1                         | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 0.42 J    | 2.0        | 1 U       | 1 U        | 1 U        | 0.22 J    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       |
| Trichlorofluoromethane         | 2000                      | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| Vinyl chloride                 | 1                         | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       |
| Xylene (total)                 | 1000                      | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 3 U       | 3 U        | 3 U       | 3 U        | 3 U        | 3 U       | 3 U        | 5 U       | 5 U        | 0.7 J     | 5 U        | 1.0 J     |
| Total VOCs                     | -                         | ND         | ND       | ND         | ND        | 0.2 J      | 4.7 J     | 3.3 J      | ND        | ND         | ND         | 0.22 J    | 1.5        | ND        | ND         | 1.5 J     | ND         | 1.7 J     |

### Notes:

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds regulatory criteria

Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 9 of 26

| Sample ID                      | NJ CLASS IIA              | MW-13S     | MW-13S   | MW-13S     | MW-13S    | MW-13S     | MW-13S   | MW-13S     | MW-13S    | MW-13S     | MW-13S     | MW-14S   | MW-14S    | MW-14S     | MW-14S     | MW-14S    | MW-14S     | MW-15D     |
|--------------------------------|---------------------------|------------|----------|------------|-----------|------------|----------|------------|-----------|------------|------------|----------|-----------|------------|------------|-----------|------------|------------|
| Sample Date                    | GROUNDWATER QUALITY       | 12/20/2006 | 7/6/2007 | 12/27/2007 | 6/24/2008 | 12/19/2008 | 7/2/2009 | 12/23/2009 | 6/30/2010 | 12/16/2010 | 12/29/2011 | 7/6/2007 | 6/29/2010 | 12/16/2010 | 12/29/2011 | 8/16/2012 | 12/20/2012 | 12/20/2004 |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L       | ug/L     | ug/L       | ug/L      | ug/L       | ug/L     | ug/L       | ug/L      | ug/L       | ug/L       | ug/L     | ug/L      | ug/L       | ug/L       | ug/L      | ug/L       | ug/L       |
| (VOCs)                         |                           |            |          |            |           |            |          |            |           |            |            |          |           |            |            |           |            |            |
| Acetone                        | 6000                      | NA         | NA       | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA         | NA       | NA        | NA         | NA         | 33        | 5 U        | NA         |
| Benzene                        | 1                         | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        | 0.23 J    | 1 U        | 1 U        | 0.2 U    | 1 U       | 1 U        | 1 U        | 1 U       | 0.088 J    | 1.3        |
| Bromodichloromethane           | 1                         | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.2 U    | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U        |
| Bromoform                      | 4                         | 4 U        | 0.2 U    | 4 U        | 4 U       | 4 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.2 U    | 1 U       | 1 U        | 1 U        | NA        | NA         | 4 U        |
| Bromomethane                   | 10                        | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.4 U    | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U        |
| 2- Butanone                    | 300                       | NA         | NA       | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA         | NA       | NA        | NA         | NA         | 3.3 J     | 5 U        | NA         |
| Carbon Disulfide               | 700                       | NA         | NA       | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA         | NA       | NA        | NA         | NA         | 1 U       | 1 U        | NA         |
| Carbon tetrachloride           | 1                         | 2 U        | 0.3 U    | 2 U        | 2 U       | 2 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.5      | 0.44 J    | 1 U        | 0.43 J     | 0.53 J    | 0.3 J      | 2 U        |
| Chlorobenzene                  | 50                        | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.2 U    | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U        |
| Chloroethane                   | -                         | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.4 U    | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U        |
| 2-Chloroethyl vinyl ether      | -                         | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | NA       | NA         | NA        | NA         | NA         | 0.2 U    | NA        | NA         | NA         | NA        | NA         | 5 U        |
| Chloroform                     | 70                        | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.6      | 0.55 J    | 0.49 J     | 0.47 J     | 0.66 J    | 0.54 J     | 5 U        |
| Chloromethane                  | -                         | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.4 U    | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U        |
| Dibromochloromethane           | 1                         | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.3 U    | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U        |
| 1,1-Dichloroethane             | 50                        | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.3 U    | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U        |
| 1,2-Dichloroethane             | 2                         | 2 U        | 0.3 U    | 2 U        | 2 U       | 2 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.3 U    | 1 U       | 1 U        | 1 U        | 0.19 J    | 1 U        | 0.6 J      |
| 1,1-Dichloroethene             | 1                         | 2 U        | 0.5 U    | 2 U        | 2 U       | 2 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.5 U    | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5.1        |
| cis-1,2-Dichloroethene         | 70                        | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.3 U    | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U        |
| trans-1,2-Dichloroethene       | 100                       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.4 U    | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U        |
| 1,2-Dichloropropane            | 1                         | 1 U        | 0.5 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.5 U    | 1 U       | 1 U        | 1 U        | NA        | NA         | 1 U        |
| cis-1,3-Dichloropropene        | -                         | 5 U        | 0.1 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.1 U    | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U        |
| trans-1,3-Dichloropropene      | -                         | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.2 U    | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U        |
| Ethylbenzene                   | 700                       | 4 U        | 0.4 U    | 4 U        | 4 U       | 4 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.4 U    | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 4 U        |
| Methyl tert-butyl ether (MTBE) | 70                        | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.3 U    | 1 U       | 1 U        | 1 U        | NA        | 1 U        | 5 U        |
| Methylene chloride             | 3                         | 3 U        | 0.4 U    | 3 U        | 3 U       | 3 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.4 U    | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 3 U        |
| t-Butyl Alcohol (TBA)          | 100                       | 100 U      | 6.5 U    | 100 U      | 100 U     | 100 U      | 20 U     | 20 U       | 20 U      | 20 U       | 20 U       | 6.5 U    | 20 U      | 20 U       | 20 U       | NA        | NA         | 100 U      |
| 1,1,2,2-Tetrachloroethane      | 1                         | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.4 U    | 1 U       | 1 U        | 1 U        | 0.44 J    | 1 U        | 1 U        |
| Tetrachloroethene              | 1                         | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.4 U    | 1 U       | 1 U        | 1 U        | 1 U       | 0.22 J     | 1 U        |
| Toluene                        | 600                       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.3 U    | 1 U       | 1 U        | 0.19 J     | 1 U       | 1 U        | 2 J        |
| 1,1,1-Trichloroethane          | 30                        | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.4 U    | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U        |
| 1,1,2-Trichloroethane          | 3                         | 3 U        | 0.2 U    | 3 U        | 3 U       | 3 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.2 U    | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 3 U        |
| Trichloroethene                | 1                         | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.4 U    | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 0.8 J      |
| Trichlorofluoromethane         | 2000                      | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | NA       | NA         | NA        | NA         | 1 U        | 0.4 U    | NA        | NA         | 1 U        | NA        | NA         | 5 U        |
| Vinyl chloride                 | 1                         | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.2 U    | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 2.5 J      |
| Xylene (total)                 | 1000                      | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 3 U      | 3 U        | 3 U       | 3 U        | 3 U        | 0.4 U    | 3 U       | 3 U        | 3 U        | 3 U       | 3 U        | 5 U        |
| Total VOCs                     |                           | ND         | ND       | ND         | ND        | ND         | ND       | ND         | 0.23 J    | ND         | ND         | 1.1      | 0.99 J    | 0.49 J     | 1.09 J     | 38.12 J   | 1.15 J     | 12.3 J     |

### Notes:

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds regulatory criteria

Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 10 of 26

| Sample ID                      |                                               | MW-15D    | MW-15D     | MW-15D    | MW-15D     | MW-15D   | MW-15D     | MW-15D    | MW-15D     | MW-15D   | MW-15D     | MW-15D    | MW-15D     | MW-15D     | MW-15D    | MW-15D     | MW-19S    | MW-19S     |
|--------------------------------|-----------------------------------------------|-----------|------------|-----------|------------|----------|------------|-----------|------------|----------|------------|-----------|------------|------------|-----------|------------|-----------|------------|
| Sample Date                    | GROUNDWATER QUALITY CRITERIA (7/22/2010) ug/L | 6/28/2005 | 12/21/2005 | 6/21/2006 | 12/20/2006 | 7/6/2007 | 12/27/2007 | 6/24/2008 | 12/19/2008 | 7/1/2009 | 12/23/2009 | 6/30/2010 | 12/16/2010 | 12/29/2011 | 7/11/2012 | 12/20/2012 | 6/29/2004 | 12/20/2004 |
| (VOCs)                         |                                               | ug/L      | ug/L       | ug/L      | ug/L       | ug/L     | ug/L       | ug/L      | ug/L       | ug/L     | ug/L       | ug/L      | ug/L       | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       |
| Acetone                        | 6000                                          | NA        | NA NA      | NA        | NA         | NA       | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA         | 5 U       | 5 U        | NA        | NA NA      |
| Benzene                        | 1                                             | 4.3       | 0.9 J      | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 0.16 J     | 1 U       | 0.7 J      |
| Bromodichloromethane           | 1                                             | 1 U       | 1 U        | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 10         | 1 U        | 10        | 1 U        | 1 U       | 1 U        |
| Bromoform                      | 4                                             | 4 U       | 4 U        | 4 U       | 4 U        | 0.2 U    | 4 U        | 4 U       | 4 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | NA.       | NA NA      | 4 U       | 4 U        |
| Bromomethane                   | 10                                            | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | NA.       | NA NA      | 5 U       | 5 U        |
| 2- Butanone                    | 300                                           | NA NA     | NA NA      | NA NA     | NA NA      | NA NA    | NA NA      | NA NA     | NA NA      | NA NA    | NA NA      | NA NA     | NA NA      | NA NA      | 5 U       | 5 U        | NA NA     | NA NA      |
| Carbon Disulfide               | 700                                           | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA         | 1 U       | 1 U        | NA        | NA         |
| Carbon tetrachloride           | 1                                             | 2 U       | 2 U        | 2 U       | 2 U        | 0.3 U    | 2 U        | 2 U       | 2 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 2 U       | 2 U        |
| Chlorobenzene                  | 50                                            | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        |
| Chloroethane                   | -                                             | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        |
| 2-Chloroethyl vinyl ether      | -                                             | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | NA         | NA        | NA         | 5 U       | 5 U        |
| Chloroform                     | 70                                            | 5 U       | 5 U        | 5 U       | 5 U        | 0.3      | 0.3 J      | 0.4 J     | 0.4 J      | 0.41 J   | 0.33 J     | 0.42 J    | 0.47 J     | 0.29 J     | 0.25 J    | 0.27 J     | 5 U       | 5 U        |
| Chloromethane                  | -                                             | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        |
| Dibromochloromethane           | 1                                             | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        |
| 1,1-Dichloroethane             | 50                                            | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 2.6 J     | 2.8 J      |
| 1,2-Dichloroethane             | 2                                             | 1.1 J     | 2 U        | 2 U       | 0.5 J      | 0.3      | 2 U        | 2 U       | 2 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 0.22 J     | 2 U       | 2 U        |
| 1,1-Dichloroethene             | 1                                             | 7.6       | 4.1        | 3.0       | 2.2        | 2.2      | 1.2 J      | 1.1 J     | 1.1 J      | 1.8      | 2.2        | 1.1       | 1.4        | 0.88 J     | 1.4       | 2.9        | 2 U       | 2 U        |
| cis-1,2-Dichloroethene         | 70                                            | 0.9 J     | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        |
| trans-1,2-Dichloroethene       | 100                                           | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1.7        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        |
| 1,2-Dichloropropane            | 1                                             | 1 U       | 1 U        | 1 U       | 1 U        | 0.5 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 1 U       | 1 U        |
| cis-1,3-Dichloropropene        | -                                             | 5 U       | 5 U        | 5 U       | 5 U        | 0.1 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        |
| trans-1,3-Dichloropropene      | -                                             | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        |
| Ethylbenzene                   | 700                                           | 4 U       | 4 U        | 4 U       | 4 U        | 0.4 U    | 4 U        | 4 U       | 4 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1.2 J     | 1 J        |
| Methyl tert-butyl ether (MTBE) | 70                                            | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        |
| Methylene chloride             | 3                                             | 3 U       | 3 U        | 3 U       | 3 U        | 0.4 U    | 3 U        | 3 U       | 3 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 3 U       | 3 U        |
| t-Butyl Alcohol (TBA)          | 100                                           | 100 U     | 100 U      | 100 U     | 100 U      | 6.5 U    | 100 U      | 100 U     | 100 U      | 20 U     | 20 U       | 20 U      | 20 U       | 20 U       | NA        | NA         | 100 U     | 100 U      |
| 1,1,2,2-Tetrachloroethane      | 1                                             | 1 U       | 1 U        | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| Tetrachloroethene              | 1                                             | 1 U       | 1 U        | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| Toluene                        | 600                                           | 5 U       | 5 U        | 0.6 J     | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 0.41 J     | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 1.9 J      |
| 1,1,1-Trichloroethane          | 30                                            | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        |
| 1,1,2-Trichloroethane          | 3                                             | 3 U       | 3 U        | 3 U       | 3 U        | 0.2 U    | 3 U        | 3 U       | 3 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 3 U       | 3 U        |
| Trichloroethene                | 1                                             | 1.6       | 0.7 J      | 0.6 J     | 0.5 J      | 0.6      | 1 U        | 1 U       | 1 U        | 0.29 J   | 0.69 J     | 0.25 J    | 1 U        | 1 U        | 0.24 J    | 0.59 J     | 20        | 20         |
| Trichlorofluoromethane         | 2000                                          | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 0.21 J     | NA        | NA         | 5 U       | 5 U        |
| Vinyl chloride                 | 1                                             | 7.0       | 0.5 J      | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        |
| Xylene (total)                 | 1000                                          | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 3 U      | 3 U        | 3 U       | 3 U        | 3 U        | 3 U       | 3 U        | 2.9 J     | 2.5 J      |
| Total VOCs                     |                                               | 22.5 J    | 6.2 J      | 4.2 J     | 3.2 J      | 3.4      | 1.5 J      | 1.5 J     | 1.5 J      | 2.5 J    | 5.3 J      | 1.77 J    | 1.87 J     | 1.38 J     | 1.89 J    | 4.14 J     | 26.7 J    | 28.9 J     |

### Notes:

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds

regulatory criteria Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 11 of 26

| Sample ID                      | NJ CLASS IIA              | MW-19S    | MW-19S     | MW-19S    | MW-19S     | MW-19S   | MW-19S     | MW-19S    | MW-19S     | MW-19S    | MW-19S     | MW-19S    | MW-19S     | MW-19S     | MW-19S    | MW-19S     | MW-20S    | MW-20S        |
|--------------------------------|---------------------------|-----------|------------|-----------|------------|----------|------------|-----------|------------|-----------|------------|-----------|------------|------------|-----------|------------|-----------|---------------|
| Sample Date                    | GROUNDWATER QUALITY       | 6/28/2005 | 12/21/2005 | 6/21/2006 | 12/20/2006 | 7/6/2007 | 12/27/2007 | 6/24/2008 | 12/19/2008 | 6/30/2009 | 12/23/2009 | 6/29/2010 | 12/16/2010 | 12/29/2011 | 7/10/2012 | 12/20/2012 | 6/28/2005 | 12/21/2005    |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L      | ug/L       | ug/L      | ug/L       | ug/L     | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L       | ug/L      | ug/L       | ug/L      | ug/L          |
| (VOCs)                         |                           |           |            |           |            |          |            |           |            |           |            |           |            |            |           |            |           |               |
| Acetone                        | 6000                      | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA        | NA         | NA        | NA         | NA         | 5 U       | 5 U        | NA        | NA            |
| Benzene                        | 1                         | 1 U       | 0.5 J      | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 0.8 J      | 1 U       | 1 U        | 1 U       | 1 U        | 0.37 J     | 0.13 J    | 0.088 J    | 1 U       | 1 U [1 U]     |
| Bromodichloromethane           | 1                         | 1 U       | 1 U        | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]     |
| Bromoform                      | 4                         | 4 U       | 4 U        | 4 U       | 4 U        | 0.2 U    | 4 U        | 4 U       | 4 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 4 U       | 4 U [4 U]     |
| Bromomethane                   | 10                        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U [5 U]     |
| 2- Butanone                    | 300                       | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA        | NA         | NA        | NA         | NA         | 5 U       | 5 U        | NA        | NA            |
| Carbon Disulfide               | 700                       | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA        | NA         | NA        | NA         | NA         | 1 U       | 1 U        | NA        | NA            |
| Carbon tetrachloride           | 1                         | 2 U       | 2 U        | 2 U       | 2 U        | 0.3 U    | 2 U        | 2 U       | 2 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 2 U       | 2 U [2 U]     |
| Chlorobenzene                  | 50                        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U [5 U]     |
| Chloroethane                   | -                         | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 0.99 J     | 1 U        | 1 U       | 0.75 J     | 5 U       | 5 U [5 U]     |
| 2-Chloroethyl vinyl ether      | -                         | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | NA         | NA        | NA         | 5 U       | 5 U [5 U]     |
| Chloroform                     | 70                        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 0.3 J      | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U [5 U]     |
| Chloromethane                  | -                         | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U [5 U]     |
| Dibromochloromethane           | 1                         | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U [5 U]     |
| 1,1-Dichloroethane             | 50                        | 3.5 J     | 5 U        | 2.9 J     | 1.1 J      | 2.9      | 5 U        | 1.5 J     | 5 U        | 1.1       | 1 U        | 1.1       | 0.34 J     | 0.86 J     | 0.66 J    | 1 U        | 5 U       | 5 U [5 U]     |
| 1,2-Dichloroethane             | 2                         | 2 U       | 2 U        | 2 U       | 2 U        | 0.2 U    | 2 U        | 2 U       | 0.3 J      | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 2 U       | 2 U [2 U]     |
| 1,1-Dichloroethene             | 1                         | 2 U       | 2.6        | 2 U       | 2 U        | 0.5 U    | 2 U        | 2 U       | 2.0        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 2 U       | 2 U [2 U]     |
| cis-1,2-Dichloroethene         | 70                        | 1.2 J     | 5 U        | 39        | 1.0 J      | 6.0      | 31         | 2.6 J     | 0.5 J      | 3.1       | 0.23 J     | 2.8       | 16         | 2.7        | 1.6       | 9          | 5 U       | 5 U [5 U]     |
| trans-1,2-Dichloroethene       | 100                       | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U [5 U]     |
| 1,2-Dichloropropane            | 1                         | 1 U       | 1 U        | 1 U       | 1 U        | 0.5 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 1 U       | 1 U [1 U]     |
| cis-1,3-Dichloropropene        | -                         | 5 U       | 5 U        | 5 U       | 5 U        | 0.1 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U [5 U]     |
| trans-1,3-Dichloropropene      | -                         | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U [5 U]     |
| Ethylbenzene                   | 700                       | 0.4 J     | 4 U        | 2.0 J     | 4 U        | 0.4 U    | 0.7 J      | 0.5 J     | 4 U        | 1.0       | 1 U        | 0.77 J    | 2.0        | 1.6        | 0.97 J    | 2.7        | 4 U       | 4 U [4 U]     |
| Methyl tert-butyl ether (MTBE) | 70                        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U [5 U]     |
| Methylene chloride             | 3                         | 3 U       | 3 U        | 3 U       | 3 U        | 0.4 U    | 3 U        | 3 U       | 3 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 3 U       | 3 U [3 U]     |
| t-Butyl Alcohol (TBA)          | 100                       | 100 U     | 9.3 J      | 100 U     | 100 U      | 6.5 U    | 100 U      | 100 U     | 100 U      | 20 U      | 20 U       | 20 U      | 20 U       | 20 U       | NA        | NA         | 100 U     | 100 U [100 U] |
| 1,1,2,2-Tetrachloroethane      | 1                         | 1 U       | 1 U        | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]     |
| Tetrachloroethene              | 1                         | 0.5 J     | 1 U        | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U       | 0.26 J     | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U [1 U]     |
| Toluene                        | 600                       | 5 U       | 5 U        | 0.7 J     | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 0.18 J     | 1 U        | 1 U       | 1 U        | 5 U       | 5 U [5 U]     |
| 1,1,1-Trichloroethane          | 30                        | 5 U       | 5 U        | 5 U       | 0.7 J      | 0.4 U    | 5 U        | 5 U       | 1.0 J      | 1 U       | 0.85 J     | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U [5 U]     |
| 1,1,2-Trichloroethane          | 3                         | 3 U       | 3 U        | 3 U       | 3 U        | 0.2 U    | 3 U        | 3 U       | 3 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 3 U       | 3 U [3 U]     |
| Trichloroethene                | 1                         | 15        | 3.3        | 1 U       | 4.0        | 3.3      | 1.1        | 3.4       | 3.8        | 2.1       | 1.7        | 0.94 J    | 0.73 J     | 1 U        | 0.64 J    | 0.12 J     | 1 U       | 1 U [1 U]     |
| Trichlorofluoromethane         | 2000                      | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.68 J     | NA        | NA         | 5 U       | 5 U [5 U]     |
| Vinyl chloride                 | 1                         | 5 U       | 0.4 J      | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 0.8 J      | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U [5 U]     |
| Xylene (total)                 | 1000                      | 0.5 J     | 5 U        | 5.5       | 5 U        | 0.4      | 1.6 J      | 0.8 J     | 5 U        | 2.4 J     | 3 U        | 2.0 J     | 6.4        | 4.0        | 1.9 J     | 2.3 J      | 5 U       | 5 U [5 U]     |
| Total VOCs                     | -                         | 21.1 J    | 16.1 J     | 50.1 J    | 6.8        | 12.6     | 34.4 J     | 8.8 J     | 9.5 J      | 9.7 J     | 3 J        | 7.61 J    | 26.6 J     | 10.2 J     | 5.9 J     | 14.96 J    | ND        | ND [ND]       |

### Notes:

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds regulatory criteria

Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 12 of 26

| Sample ID                      | NJ CLASS IIA              | MW-20S    | MW-20S     | MW-20S   | MW-20S    | MW-20D     | MW-20D    | MW-20D     | MW-20D    | MW-20D     | MW-20D   | MW-20D     | MW-20D    | MW-20D        | MW-20D   | MW-20D     | MW-20D    | MW-20D     |
|--------------------------------|---------------------------|-----------|------------|----------|-----------|------------|-----------|------------|-----------|------------|----------|------------|-----------|---------------|----------|------------|-----------|------------|
| Sample Date                    |                           | 6/21/2006 | 12/20/2006 | 7/6/2007 | 6/24/2008 | 12/20/2004 | 6/28/2005 | 12/21/2005 | 6/21/2006 | 12/20/2006 | 7/6/2007 | 12/27/2007 | 6/24/2008 | 12/19/2008    | 7/1/2009 | 12/23/2009 | 6/30/2010 | 12/16/2010 |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L      | ug/L       | ug/L     | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L     | ug/L       | ug/L      | ug/L          | ug/L     | ug/L       | ug/L      | ug/L       |
| (VOCs)                         |                           |           | <u> </u>   |          |           |            |           | <u> </u>   |           |            |          |            |           | <u> </u>      |          |            |           |            |
| Acetone                        | 6000                      | NA        | NA         | NA       | NA        | NA         | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA            | NA       | NA         | NA        | NA         |
| Benzene                        | 1                         | 1 U       | 1 U        | 0.2 U    | 1 U       | 1 U        | 1.0       | 0.8 J      | 0.8 J     | 1 U        | 1.0      | 0.4 J      | 0.3 J     | 1 U [1 U]     | 1 U      | 0.35 J     | 0.32 J    | 0.26 J     |
| Bromodichloromethane           | 1                         | 1 U       | 1 U        | 0.2 U    | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U [1 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| Bromoform                      | 4                         | 4 U       | 4 U        | 0.2 U    | 4 U       | 4 U        | 4 U       | 4 U        | 4 U       | 4 U        | 0.2 U    | 4 U        | 4 U       | 4 U [4 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| Bromomethane                   | 10                        | 5 U       | 5 U        | 0.4 U    | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U [5 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| 2- Butanone                    | 300                       | NA        | NA         | NA       | NA        | NA         | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA            | NA       | NA         | NA        | NA         |
| Carbon Disulfide               | 700                       | NA        | NA         | NA       | NA        | NA         | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA            | NA       | NA         | NA        | NA         |
| Carbon tetrachloride           | 1                         | 2 U       | 2 U        | 0.3 U    | 2 U       | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        | 0.3 U    | 2 U        | 2 U       | 2 U [2 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| Chlorobenzene                  | 50                        | 5 U       | 5 U        | 0.2 U    | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U [5 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| Chloroethane                   | -                         | 5 U       | 5 U        | 0.4 U    | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U [5 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| 2-Chloroethyl vinyl ether      | -                         | 5 U       | 5 U        | 0.2 U    | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U [5 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| Chloroform                     | 70                        | 5 U       | 5 U        | 0.2 U    | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U [5 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| Chloromethane                  | -                         | 5 U       | 5 U        | 0.4 U    | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U [5 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| Dibromochloromethane           | 1                         | 5 U       | 5 U        | 0.3 U    | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U [5 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| 1,1-Dichloroethane             | 50                        | 5 U       | 5 U        | 0.3 U    | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U [5 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| 1,2-Dichloroethane             | 2                         | 2 U       | 2 U        | 0.3 U    | 2 U       | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        | 0.3      | 2 U        | 2 U       | 2 U [2 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| 1,1-Dichloroethene             | 1                         | 2 U       | 2 U        | 0.5 U    | 2 U       | 1.3 J      | 1.4 J     | 1.9 J      | 1.5 J     | 1.8 J      | 1.7      | 0.7 J      | 1.0       | 0.5 J [0.7 J] | 0.85 J   | 0.25 J     | 0.82 J    | 1 U        |
| cis-1,2-Dichloroethene         | 70                        | 5 U       | 5 U        | 0.3 U    | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3      | 5 U        | 5 U       | 5 U [5 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| trans-1,2-Dichloroethene       | 100                       | 5 U       | 5 U        | 0.4 U    | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U [5 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| 1,2-Dichloropropane            | 1                         | 1 U       | 1 U        | 0.5 U    | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.5 U    | 1 U        | 1 U       | 1 U [1 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| cis-1,3-Dichloropropene        | -                         | 5 U       | 5 U        | 0.1 U    | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.1 U    | 5 U        | 5 U       | 5 U [5 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| trans-1,3-Dichloropropene      | -                         | 5 U       | 5 U        | 0.2 U    | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U [5 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| Ethylbenzene                   | 700                       | 4 U       | 4 U        | 0.4 U    | 4 U       | 4 U        | 4 U       | 4 U        | 4 U       | 4 U        | 0.4 U    | 4 U        | 4 U       | 4 U [4 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| Methyl tert-butyl ether (MTBE) | 70                        | 0.6 J     | 5 U        | 0.3 U    | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U [5 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| Methylene chloride             | 3                         | 3 U       | 3 U        | 0.4 U    | 3 U       | 3 U        | 3 U       | 3 U        | 3 U       | 3 U        | 0.4 U    | 3 U        | 3 U       | 3 U [3 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| t-Butyl Alcohol (TBA)          | 100                       | 100 U     | 100 U      | 6.5 U    | 100 U     | 100 U      | 100 U     | 100 U      | 100 U     | 100 U      | 6.5 U    | 100 U      | 100 U     | 100 U [100 U] | 20 U     | 20 U       | 20 U      | 20 U       |
| 1,1,2,2-Tetrachloroethane      | 1                         | 1 U       | 1 U        | 0.4 U    | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U [1 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| Tetrachloroethene              | 1                         | 1 U       | 1 U        | 0.4 U    | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U [1 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| Toluene                        | 600                       | 5 U       | 5 U        | 0.3 U    | 5 U       | 2.5 J      | 0.7 J     | 5 U        | 0.7 J     | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U [5 U]     | 1 U      | 1.1        | 1 U       | 1 U        |
| 1,1,1-Trichloroethane          | 30                        | 5 U       | 5 U        | 0.4 U    | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U [5 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| 1,1,2-Trichloroethane          | 3                         | 3 U       | 3 U        | 0.2 U    | 3 U       | 3 U        | 3 U       | 3 U        | 3 U       | 3 U        | 0.2 U    | 3 U        | 3 U       | 3 U [3 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| Trichloroethene                | 1                         | 1 U       | 1 U        | 0.4 U    | 1 U       | 1 U        | 1 U       | 0.5 J      | 1 U       | 0.5 J      | 0.4 U    | 1 U        | 1 U       | 1 U [1 U]     | 0.24 J   | 1 U        | 1 U       | 1 U        |
| Trichlorofluoromethane         | 2000                      | 5 U       | 5 U        | 0.4 U    | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U [5 U]     | 1 U      | 1 U        | 1 U       | 1 U        |
| Vinyl chloride                 | 1                         | 5 U       | 5 U        | 0.2 U    | 5 U       | 5 U        | 1.4 J     | 1.7 J      | 1.4 J     | 5 U        | 1.7      | 5 U        | 0.8 J     | 5 U [5 U]     | 1 U      | 1 U        | 0.52 J    | 1 U        |
| Xylene (total)                 | 1000                      | 5 U       | 5 U        | 0.4 U    | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U [5 U]     | 3 U      | 3 U        | 3 U       | 3 U        |
| Total VOCs                     |                           | 0.6 J     | ND         | ND       | ND        | 3.8 J      | 4.5 J     | 4.9 J      | 4.4 J     | 2.3 J      | 5.0      | 1.1 J      | 2.1       | 0.5 J [0.7 J] | 1.1 J    | 1.7 J      | 1.66 J    | 0.26 J     |

### Notes:

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds regulatory criteria

Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 13 of 26

| Sample ID                      | NJ CLASS IIA              | MW-20D     | MW-21S    | MW-21S     | MW-21S    | MW-21S     | MW-21S    | MW-21S     | MW-21S   | MW-21S     | MW-21S    | MW-21S     | MW-21S   | MW-21S     | MW-21S     | MW-22D     | MW-22D    | MW-22D     |
|--------------------------------|---------------------------|------------|-----------|------------|-----------|------------|-----------|------------|----------|------------|-----------|------------|----------|------------|------------|------------|-----------|------------|
| Sample Date                    |                           | 12/29/2011 | 6/29/2004 | 12/20/2004 | 6/28/2005 | 12/21/2005 | 6/21/2006 | 12/20/2006 | 7/6/2007 | 12/27/2007 | 6/24/2008 | 12/19/2008 | 7/1/2009 | 12/23/2009 | 12/29/2011 | 12/20/2004 | 6/28/2005 | 12/21/2005 |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L     | ug/L       | ug/L      | ug/L       | ug/L     | ug/L       | ug/L       | ug/L       | ug/L      | ug/L       |
| (VOCs)                         |                           |            |           |            |           |            |           |            |          | <u>.</u>   |           |            |          |            |            |            |           |            |
| Acetone                        | 6000                      | NA         | NA        | NA         | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA       | NA         | NA         | NA         | NA        | NA         |
| Benzene                        | 1                         | 0.43 J     | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 0.6 J      | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U      | 0.21 J     | 0.33 J     | 1 U        | 1 U       | 1 U        |
| Bromodichloromethane           | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        | 1 U        | 1 U        | 1 U       | 1 U        |
| Bromoform                      | 4                         | 1 U        | 4 U       | 4 U        | 4 U       | 4 U        | 4 U       | 4 U        | 0.2 U    | 4 U        | 4 U       | 4 U        | 1 U      | 1 U        | 1 U        | 4 U        | 4 U       | 4 U        |
| Bromomethane                   | 10                        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U        | 5 U        | 5 U       | 5 U        |
| 2- Butanone                    | 300                       | NA         | NA        | NA         | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA       | NA         | NA         | NA         | NA        | NA         |
| Carbon Disulfide               | 700                       | NA         | NA        | NA         | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA       | NA         | NA         | NA         | NA        | NA         |
| Carbon tetrachloride           | 1                         | 1 U        | 2 U       | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        | 0.3 U    | 2 U        | 2 U       | 2 U        | 1 U      | 1 U        | 1 U        | 2 U        | 2 U       | 2 U        |
| Chlorobenzene                  | 50                        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U        | 5 U        | 5 U       | 5 U        |
| Chloroethane                   | -                         | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U        | 5 U        | 5 U       | 5 U        |
| 2-Chloroethyl vinyl ether      | -                         | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U        | 5 U        | 5 U       | 5 U        |
| Chloroform                     | 70                        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U        | 5 U        | 5 U       | 5 U        |
| Chloromethane                  | -                         | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U        | 5 U        | 5 U       | 5 U        |
| Dibromochloromethane           | 1                         | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U        | 5 U        | 5 U       | 5 U        |
| 1,1-Dichloroethane             | 50                        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U        | 5 U        | 5 U       | 5 U        |
| 1,2-Dichloroethane             | 2                         | 1 U        | 2 U       | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        | 0.3 U    | 2 U        | 2 U       | 2 U        | 1 U      | 1 U        | 1 U        | 2 U        | 2 U       | 2 U        |
| 1,1-Dichloroethene             | 1                         | 0.89 J     | 2 U       | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        | 0.5 U    | 2 U        | 2 U       | 2 U        | 1 U      | 1 U        | 1 U        | 2 U        | 2 U       | 2 U        |
| cis-1,2-Dichloroethene         | 70                        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U        | 5 U        | 5 U       | 5 U        |
| trans-1,2-Dichloroethene       | 100                       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U        | 5 U        | 5 U       | 5 U        |
| 1,2-Dichloropropane            | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.5 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        | 1 U        | 1 U        | 1 U       | 1 U        |
| cis-1,3-Dichloropropene        | -                         | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.1 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U        | 5 U        | 5 U       | 5 U        |
| trans-1,3-Dichloropropene      | -                         | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U        | 5 U        | 5 U       | 5 U        |
| Ethylbenzene                   | 700                       | 1 U        | 4 U       | 4 U        | 4 U       | 4 U        | 4 U       | 4 U        | 0.4 U    | 4 U        | 4 U       | 4 U        | 1 U      | 1 U        | 1 U        | 4 U        | 4 U       | 4 U        |
| Methyl tert-butyl ether (MTBE) | 70                        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U        | 5 U        | 5 U       | 5 U        |
| Methylene chloride             | 3                         | 1 U        | 3 U       | 3 U        | 3 U       | 3 U        | 3 U       | 3 U        | 0.4 U    | 3 U        | 3 U       | 3 U        | 1 U      | 1 U        | 1 U        | 3 U        | 3 U       | 3 U        |
| t-Butyl Alcohol (TBA)          | 100                       | 20 U       | 100 U     | 100 U      | 100 U     | 100 U      | 100 U     | 100 U      | 6.5 U    | 100 U      | 100 U     | 100 U      | 20 U     | 20 U       | 20 U       | 100 U      | 100 U     | 100 U      |
| 1,1,2,2-Tetrachloroethane      | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        | 1 U        | 1 U        | 1 U       | 1 U        |
| Tetrachloroethene              | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.4 U    | 0.3 J      | 1 U       | 1 U        | 1 U      | 1 U        | 1 U        | 1 U        | 1 U       | 1 U        |
| Toluene                        | 600                       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 0.13 J     | 1 U        | 1 J        | 5 U       | 5 U        |
| 1,1,1-Trichloroethane          | 30                        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U        | 5 U        | 5 U       | 5 U        |
| 1,1,2-Trichloroethane          | 3                         | 1 U        | 3 U       | 3 U        | 3 U       | 3 U        | 3 U       | 3 U        | 0.2 U    | 3 U        | 3 U       | 3 U        | 1 U      | 1 U        | 1 U        | 3 U        | 3 U       | 3 U        |
| Trichloroethene                | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        | 1 U        | 1 U        | 0.4 J     | 1 U        |
| Trichlorofluoromethane         | 2000                      | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U        | 5 U        | 5 U       | 5 U        |
| Vinyl chloride                 | 1                         | 0.64 J     | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U        | 5 U        | 5 U       | 5 U        |
| Xylene (total)                 | 1000                      | 3 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 3 U      | 3 U        | 3 U        | 5 U        | 5 U       | 5 U        |
| Total VOCs                     | -                         | 1.96 J     | ND        | ND         | ND        | ND         | ND        | 0.6 J      | ND       | 0.3 J      | ND        | ND         | ND       | 0.34 J     | 0.33 J     | 1 J        | 0.4 J     | ND         |

### Notes:

U Not Detected Above Detection Limits
-- Not Sampled
Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds regulatory criteria

Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 14 of 26

| Sample ID                      | NJ CLASS IIA              | MW-22D    | MW-22D     | MW-22D   | MW-22D     | MW-22D        | MW-22D     | MW-22D      | MW-22D      | MW-22D          | MW-22D     | MW-22D     | MW-22I    | MW-22I     | MW-22I    | MW-22I     | MW-22I    | MW-22I     |
|--------------------------------|---------------------------|-----------|------------|----------|------------|---------------|------------|-------------|-------------|-----------------|------------|------------|-----------|------------|-----------|------------|-----------|------------|
| Sample Date                    |                           | 6/21/2006 | 12/20/2006 | 7/6/2007 | 12/27/2007 | 6/24/2008     | 12/19/2008 | 7/1/2009    | 12/23/2009  | 6/30/2010       | 12/16/2010 | 12/29/2011 | 6/29/2004 | 12/20/2004 | 6/28/2005 | 12/21/2005 | 6/21/2006 | 12/20/2006 |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L      | ug/L       | ug/L     | ug/L       | ug/L          | ug/L       | ug/L        | ug/L        | ug/L            | ug/L       | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       |
| (VOCs)                         |                           |           |            |          |            |               |            |             |             |                 |            | <u> </u>   |           |            |           |            |           |            |
| Acetone                        | 6000                      | NA        | NA         | NA       | NA         | NA            | NA         | NA          | NA          | NA              | NA         | NA         | NA        | NA         | NA        | NA         | NA        | NA         |
| Benzene                        | 1                         | 1 U       | 0.7 J      | 0.2 U    | 1 U        | 1 U [1 U]     | 1 U        | 1 U [1 U]   | 1 U [1 U]   | 0.22 J [0.27 J] | 1 U        | 0.24 J     | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| Bromodichloromethane           | 1                         | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U [1 U]     | 1 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| Bromoform                      | 4                         | 4 U       | 4 U        | 0.2 U    | 4 U        | 4 U [4 U]     | 4 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 4 U       | 4 U        | 4 U       | 4 U        | 4 U       | 4 U        |
| Bromomethane                   | 10                        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U [5 U]     | 5 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        |
| 2- Butanone                    | 300                       | NA        | NA         | NA       | NA         | NA            | NA         | NA          | NA          | NA              | NA         | NA         | NA        | NA         | NA        | NA         | NA        | NA         |
| Carbon Disulfide               | 700                       | NA        | NA         | NA       | NA         | NA            | NA         | NA          | NA          | NA              | NA         | NA         | NA        | NA         | NA        | NA         | NA        | NA         |
| Carbon tetrachloride           | 1                         | 2 U       | 2 U        | 0.3 U    | 2 U        | 2 U [2 U]     | 2 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 2 U       | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        |
| Chlorobenzene                  | 50                        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U [5 U]     | 5 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        |
| Chloroethane                   | -                         | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U [5 U]     | 5 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        |
| 2-Chloroethyl vinyl ether      | -                         | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U [5 U]     | 5 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        |
| Chloroform                     | 70                        | 5 U       | 5 U        | 0.2      | 5 U        | 5 U [5 U]     | 5 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        |
| Chloromethane                  | -                         | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U [5 U]     | 5 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        |
| Dibromochloromethane           | 1                         | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U [5 U]     | 5 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        |
| 1,1-Dichloroethane             | 50                        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U [5 U]     | 5 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        |
| 1,2-Dichloroethane             | 2                         | 2 U       | 2 U        | 0.3 U    | 2 U        | 2 U [2 U]     | 2 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 2 U       | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        |
| 1,1-Dichloroethene             | 1                         | 2 U       | 2 U        | 1.2      | 2 U        | 0.6 J [0.5 J] | 2 U        | 1 U [1 U]   | 1 U [1 U]   | 0.2 J [1 U]     | 1 U        | 1 U        | 2 U       | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        |
| cis-1,2-Dichloroethene         | 70                        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U [5 U]     | 5 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        |
| trans-1,2-Dichloroethene       | 100                       | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U [5 U]     | 5 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        |
| 1,2-Dichloropropane            | 1                         | 1 U       | 1 U        | 0.5 U    | 1 U        | 1 U [1 U]     | 1 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| cis-1,3-Dichloropropene        | -                         | 5 U       | 5 U        | 0.1 U    | 5 U        | 5 U [5 U]     | 5 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        |
| trans-1,3-Dichloropropene      | -                         | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U [5 U]     | 5 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        |
| Ethylbenzene                   | 700                       | 4 U       | 4 U        | 0.4 U    | 4 U        | 4 U [4 U]     | 4 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 4 U       | 4 U        | 4 U       | 4 U        | 4 U       | 4 U        |
| Methyl tert-butyl ether (MTBE) | 70                        | 1.2 J     | 5 U        | 0.3 U    | 5 U        | 5 U [5 U]     | 5 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.6 J     | 5 U        |
| Methylene chloride             | 3                         | 3 U       | 3 U        | 0.4 U    | 3 U        | 3 U [3 U]     | 3 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 1.4 J     | 3 U        | 3 U       | 3 U        | 3 U       | 3 U        |
| t-Butyl Alcohol (TBA)          | 100                       | 100 U     | 100 U      | 6.5 U    | 100 U      | 100 U [100 U] | 100 U      | 20 U [20 U] | 20 U [20 U] | 20 U [20 U]     | 20 U       | 3.0 J      | 100 U     | 100 U      | 100 U     | 100 U      | 100 U     | 100 U      |
| 1,1,2,2-Tetrachloroethane      | 1                         | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U [1 U]     | 1 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| Tetrachloroethene              | 1                         | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U [1 U]     | 1 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| Toluene                        | 600                       | 1.4 J     | 5 U        | 0.3 U    | 5 U        | 5 U [5 U]     | 5 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 1.4 J      | 1.4 J     | 5 U        | 5 U       | 5 U        |
| 1,1,1-Trichloroethane          | 30                        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U [5 U]     | 5 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        |
| 1,1,2-Trichloroethane          | 3                         | 3 U       | 3 U        | 0.2 U    | 3 U        | 3 U [3 U]     | 3 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 3 U       | 3 U        | 3 U       | 3 U        | 3 U       | 3 U        |
| Trichloroethene                | 1                         | 1 U       | 1 U        | 0.5      | 1 U        | 1 U [1 U]     | 1 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 0.6 J     | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| Trichlorofluoromethane         | 2000                      | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U [5 U]     | 5 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        |
| Vinyl chloride                 | 1                         | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U [5 U]     | 5 U        | 1 U [1 U]   | 1 U [1 U]   | 1 U [1 U]       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        |
| Xylene (total)                 | 1000                      | 1.2 J     | 5 U        | 0.4 U    | 5 U        | 5 U [5 U]     | 5 U        | 3 U [3 U]   | 3 U [3 U]   | 3 U [3 U]       | 3 U        | 3 U        | 5 U       | 5 U        | 0.6 J     | 5 U        | 5 U       | 5 U        |
| Total VOCs                     |                           | 3.8 J     | 0.7 J      | 1.9      | ND         | 0.6 J [0.5 J] | ND         | ND [ND]     | ND [ND]     | 0.42 J [0.27 J] | ND         | 3.24 J     | 2 J       | 1.4 J      | 2 J       | ND         | 0.6 J     | ND         |

### Notes:

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds

regulatory criteria Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 15 of 26

| Sample ID                      | NJ CLASS IIA              | MW-22I   | MW-22I    | MW-22I        | MW-22I     | MW-22I   | MW-22I     | MW-22I    | MW-22I     | MW-22I     | MW-22S    | MW-22S     | MW-22S    | MW-22S     | MW-22S        | MW-22S        | MW-22S        | MW-22S        |
|--------------------------------|---------------------------|----------|-----------|---------------|------------|----------|------------|-----------|------------|------------|-----------|------------|-----------|------------|---------------|---------------|---------------|---------------|
| Sample Date                    | GROUNDWATER QUALITY       | 7/6/2007 | 1/22/2008 | 6/24/2008     | 12/19/2008 | 7/1/2009 | 12/23/2009 | 6/30/2010 | 12/16/2010 | 12/29/2011 | 6/29/2004 | 12/20/2004 | 6/28/2005 | 12/21/2005 | 6/21/2006     | 12/20/2006    | 7/6/2007      | 12/27/2007    |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L     | ug/L      | ug/L          | ug/L       | ug/L     | ug/L       | ug/L      | ug/L       | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L          | ug/L          | ug/L          | ug/L          |
| (VOCs)                         |                           |          |           |               |            |          | <u> </u>   |           |            |            |           | <u> </u>   |           |            |               |               |               |               |
| Acetone                        | 6000                      | NA       | NA        | NA            | NA         | NA       | NA         | NA        | NA         | NA         | NA        | NA         | NA        | NA         | NA            | NA            | NA            | NA            |
| Benzene                        | 1                         | 0.2 U    | 1 U       | 1 U [1 U]     | 1 U        | 0.96 J   | 0.19 J     | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U [1 U]     | 0.7 J [0.6 J] | 0.2 U [0.2 U] | 1 U [1 U]     |
| Bromodichloromethane           | 1                         | 0.2 U    | 1 U       | 1 U [1 U]     | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U [1 U]     | 1 U [1 U]     | 0.2 U [0.2 U] | 1 U [1 U]     |
| Bromoform                      | 4                         | 0.2 U    | 4 U       | 4 U [4 U]     | 4 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 4 U       | 4 U        | 4 U       | 4 U        | 4 U [4 U]     | 4 U [4 U]     | 0.2 U [0.2 U] | 4 U [4 U]     |
| Bromomethane                   | 10                        | 0.4 U    | 5 U       | 5 U [5 U]     | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U [5 U]     | 0.4 U [0.4 U] | 5 U [5 U]     |
| 2- Butanone                    | 300                       | NA       | NA        | NA            | NA         | NA       | NA         | NA        | NA         | NA         | NA        | NA         | NA        | NA         | NA            | NA            | NA            | NA            |
| Carbon Disulfide               | 700                       | NA       | NA        | NA            | NA         | NA       | NA         | NA        | NA         | NA         | NA        | NA         | NA        | NA         | NA            | NA            | NA            | NA            |
| Carbon tetrachloride           | 1                         | 0.3 U    | 2 U       | 2 U [2 U]     | 2 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 2 U       | 2 U        | 2 U       | 2 U        | 2 U [2 U]     | 2 U [2 U]     | 0.3 U [0.3 U] | 2 U [2 U]     |
| Chlorobenzene                  | 50                        | 0.2 U    | 5 U       | 5 U [5 U]     | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U [5 U]     | 0.2 U [0.2 U] | 5 U [5 U]     |
| Chloroethane                   | -                         | 0.4 U    | 5 U       | 5 U [5 U]     | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U [5 U]     | 0.4 U [0.4 U] | 5 U [5 U]     |
| 2-Chloroethyl vinyl ether      | -                         | 0.2 U    | 5 U       | 5 U [5 U]     | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U [5 U]     | 0.2 U [0.2 U] | 5 U [5 U]     |
| Chloroform                     | 70                        | 0.2 U    | 5 U       | 5 U [5 U]     | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U [5 U]     | 0.2 U [0.2 U] | 5 U [0.3 J]   |
| Chloromethane                  | -                         | 0.4 U    | 5 U       | 5 U [5 U]     | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U [5 U]     | 0.4 U [0.4 U] | 5 U [5 U]     |
| Dibromochloromethane           | 1                         | 0.3 U    | 5 U       | 5 U [5 U]     | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U [5 U]     | 0.3 U [0.3 U] | 5 U [5 U]     |
| 1,1-Dichloroethane             | 50                        | 0.3 U    | 5 U       | 5 U [5 U]     | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U [5 U]     | 0.3 U [0.3 U] | 5 U [5 U]     |
| 1,2-Dichloroethane             | 2                         | 0.3 U    | 2 U       | 2 U [2 U]     | 2 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 2 U       | 2 U        | 2 U       | 2 U        | 2 U [2 U]     | 2 U [2 U]     | 0.3 U [0.3 U] | 2 U [2 U]     |
| 1,1-Dichloroethene             | 1                         | 0.5 U    | 2 U       | 2 U [2 U]     | 2 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 2 U       | 2 U        | 2 U       | 2 U        | 0.7 J [2 U]   | 2 U [2 U]     | 0.5 U [0.5 U] | 2 U [1.2 J]   |
| cis-1,2-Dichloroethene         | 70                        | 0.3 U    | 5 U       | 5 U [5 U]     | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U [5 U]     | 0.3 U [0.3 U] | 5 U [5 U]     |
| trans-1,2-Dichloroethene       | 100                       | 0.4 U    | 5 U       | 5 U [5 U]     | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U [5 U]     | 0.4 U [0.4 U] | 5 U [5 U]     |
| 1,2-Dichloropropane            | 1                         | 0.5 U    | 1 U       | 1 U [1 U]     | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U [1 U]     | 1 U [1 U]     | 0.5 U [0.5 U] | 1 U [1 U]     |
| cis-1,3-Dichloropropene        | -                         | 0.1 U    | 5 U       | 5 U [5 U]     | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U [5 U]     | 0.1 U [0.1 U] | 5 U [5 U]     |
| trans-1,3-Dichloropropene      | -                         | 0.2 U    | 5 U       | 5 U [5 U]     | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U [5 U]     | 0.2 U [0.2 U] | 5 U [5 U]     |
| Ethylbenzene                   | 700                       | 0.4 U    | 4 U       | 4 U [4 U]     | 4 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 4 U       | 4 U        | 4 U       | 4 U        | 4 U [4 U]     | 4 U [4 U]     | 0.4 U [0.4 U] | 4 U [4 U]     |
| Methyl tert-butyl ether (MTBE) | 70                        | 0.3 U    | 5 U       | 5 U [5 U]     | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 0.8 J      | 2.0 J     | 0.8 J      | 5 U [0.6 J]   | 5 U [5 U]     | 0.3 U [0.3 U] | 5 U [5 U]     |
| Methylene chloride             | 3                         | 0.4 U    | 3 U       | 3 U [3 U]     | 3 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 3 U       | 3 U        | 3 U       | 3 U        | 3 U [3 U]     | 3 U [3 U]     | 0.4 U [0.4 U] | 3 U [0.3 J]   |
| t-Butyl Alcohol (TBA)          | 100                       | 6.5 U    | 100 U     | 100 U [100 U] | 100 U      | 20 U     | 20 U       | 20 U      | 20 U       | 10 J       | 100 U     | 100 U      | 100 U     | 100 U      | 100 U [100 U] | 100 U [100 U] | 6.5 U [6.5 U] | 100 U [100 U] |
| 1,1,2,2-Tetrachloroethane      | 1                         | 0.4 U    | 1 U       | 1 U [1 U]     | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U [1 U]     | 1 U [1 U]     | 0.4 U [0.4 U] | 1 U [1 U]     |
| Tetrachloroethene              | 1                         | 0.4 U    | 1 U       | 1 U [1 U]     | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U [1 U]     | 1 U [1 U]     | 0.4 U [0.4 U] | 1 U [1 U]     |
| Toluene                        | 600                       | 0.3 U    | 5 U       | 5 U [5 U]     | 5 U        | 1 U      | 1.2        | 1 U       | 1 U        | 1 U        | 5 U       | 0.7 J      | 5 U       | 5 U        | 0.8 J [5 U]   | 5 U [5 U]     | 0.3 U [0.3 U] | 5 U [5 U]     |
| 1,1,1-Trichloroethane          | 30                        | 0.4 U    | 5 U       | 5 U [5 U]     | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U [5 U]     | 0.4 U [0.4 U] | 5 U [5 U]     |
| 1,1,2-Trichloroethane          | 3                         | 0.2 U    | 3 U       | 3 U [3 U]     | 3 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 3 U       | 3 U        | 3 U       | 3 U        | 3 U [3 U]     | 3 U [3 U]     | 0.2 U [0.2 U] | 3 U [3 U]     |
| Trichloroethene                | 1                         | 0.4 U    | 1 U       | 1 U [1 U]     | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U [1 U]     | 1 U [1 U]     | 0.4 U [0.4 U] | 1 U [1 U]     |
| Trichlorofluoromethane         | 2000                      | 0.4 U    | 5 U       | 5 U [5 U]     | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U [5 U]     | 0.4 U [0.4 U] | 5 U [5 U]     |
| Vinyl chloride                 | 1                         | 0.2 U    | 5 U       | 5 U [5 U]     | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U [5 U]     | 0.2 U [0.2 U] | 5 U [5 U]     |
| Xylene (total)                 | 1000                      | 0.4 U    | 5 U       | 5 U [5 U]     | 5 U        | 3 U      | 3 U        | 3 U       | 3 U        | 3 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U [5 U]     | 0.4 U [0.4 U] | 5 U [5 U]     |
| Total VOCs                     | -                         | ND       | ND        | ND [ND]       | ND         | 0.96 J   | 1.4 J      | ND        | ND         | 10.0 J     | ND        | 1.5 J      | 2.0 J     | 0.8 J      | 1.5 J [0.6 J] | 0.7 J [0.6 J] | ND            | ND [1.8 J]    |

### Notes:

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds regulatory criteria

Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 16 of 26

| Sample ID                      | NJ CLASS IIA              | MW-22S    | MW-22S     | MW-22S   | MW-22S     | MW-22S    | MW-22S     | MW-22S     | MW-23D     | MW-23D    | MW-23D    | MW-23D     | MW-23D   | MW-23D     | MW-23D    | MW-23D     | MW-23D   | MW-23D     |
|--------------------------------|---------------------------|-----------|------------|----------|------------|-----------|------------|------------|------------|-----------|-----------|------------|----------|------------|-----------|------------|----------|------------|
| Sample Date                    | GROUNDWATER QUALITY       | 6/24/2008 | 12/19/2008 | 7/1/2009 | 12/23/2009 | 6/30/2010 | 12/16/2010 | 12/29/2011 | 12/21/2004 | 6/28/2005 | 6/21/2006 | 12/20/2006 | 7/6/2006 | 12/27/2007 | 6/24/2008 | 12/19/2008 | 7/2/2009 | 12/23/2009 |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L      | ug/L       | ug/L     | ug/L       | ug/L      | ug/L       | ug/L       | ug/L       | ug/L      | ug/L      | ug/L       | ug/L     | ug/L       | ug/L      | ug/L       | ug/L     | ug/L       |
| (VOCs)                         |                           |           |            |          |            |           |            |            |            |           |           |            |          |            |           |            |          |            |
| Acetone                        | 6000                      | NA        | NA         | NA       | NA         | NA        | NA         | NA         | NA         | NA        | NA        | NA         | NA       | NA         | NA        | NA         | NA       | NA         |
| Benzene                        | 1                         | 1 U       | 1 U        | 1 U      | 0.40 J     | 1 U       | 1 U        | 1.3        | 1 U        | 1 U       | 1 U       | 1.6        | 0.2 U    | 0.3 J      | 1 U       | 1 U        | 1 U      | 1 U        |
| Bromodichloromethane           | 1                         | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U        | 1 U       | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        |
| Bromoform                      | 4                         | 4 U       | 4 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 4 U        | 4 U       | 4 U       | 4 U        | 0.2 U    | 4 U        | 4 U       | 4 U        | 1 U      | 1 U        |
| Bromomethane                   | 10                        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U        | 5 U       | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        |
| 2- Butanone                    | 300                       | NA        | NA         | NA       | NA         | NA        | NA         | NA         | NA         | NA        | NA        | NA         | NA       | NA         | NA        | NA         | NA       | NA         |
| Carbon Disulfide               | 700                       | NA        | NA         | NA       | NA         | NA        | NA         | NA         | NA         | NA        | NA        | NA         | NA       | NA         | NA        | NA         | NA       | NA         |
| Carbon tetrachloride           | 1                         | 2 U       | 2 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 2 U        | 2 U       | 2 U       | 2 U        | 0.3 U    | 2 U        | 2 U       | 2 U        | 1 U      | 1 U        |
| Chlorobenzene                  | 50                        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U        | 5 U       | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        |
| Chloroethane                   | -                         | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U        | 5 U       | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        |
| 2-Chloroethyl vinyl ether      | -                         | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U        | 5 U       | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        |
| Chloroform                     | 70                        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.7 J      | 5 U       | 5 U       | 5 U        | 0.3      | 5 U        | 5 U       | 5 U        | 1 U      | 0.21 J     |
| Chloromethane                  | -                         | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U        | 5 U       | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        |
| Dibromochloromethane           | 1                         | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U        | 5 U       | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        |
| 1,1-Dichloroethane             | 50                        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U        | 5 U       | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        |
| 1,2-Dichloroethane             | 2                         | 2 U       | 2 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 2 U        | 2 U       | 2 U       | 2 U        | 0.3 U    | 2 U        | 2 U       | 2 U        | 1 U      | 1 U        |
| 1,1-Dichloroethene             | 1                         | 2 U       | 2 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 2.0        | 2 U       | 3.5       | 2.3        | 1.2      | 0.7 J      | 0.9 J     | 2 U        | 1 U      | 1.1        |
| cis-1,2-Dichloroethene         | 70                        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U        | 5 U       | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        |
| trans-1,2-Dichloroethene       | 100                       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U        | 5 U       | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        |
| 1,2-Dichloropropane            | 1                         | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U        | 1 U       | 1 U       | 1 U        | 0.5 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        |
| cis-1,3-Dichloropropene        | -                         | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U        | 5 U       | 5 U       | 5 U        | 0.1 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        |
| trans-1,3-Dichloropropene      | -                         | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U        | 5 U       | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        |
| Ethylbenzene                   | 700                       | 4 U       | 4 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 4 U        | 4 U       | 4 U       | 4 U        | 0.4 U    | 4 U        | 4 U       | 4 U        | 1 U      | 1 U        |
| Methyl tert-butyl ether (MTBE) | 70                        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U        | 5 U       | 0.5 J     | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        |
| Methylene chloride             | 3                         | 3 U       | 3 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 3 U        | 3 U       | 3 U       | 3 U        | 0.4 U    | 3 U        | 3 U       | 3 U        | 1 U      | 1 U        |
| t-Butyl Alcohol (TBA)          | 100                       | 100 U     | 100 U      | 20 U     | 20 U       | 20 U      | 20 U       | 20 U       | 100 U      | 100 U     | 100 U     | 100 U      | 6.5 U    | 100 U      | 100 U     | 100 U      | 20 U     | 20 U       |
| 1,1,2,2-Tetrachloroethane      | 1                         | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U        | 1 U       | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        |
| Tetrachloroethene              | 1                         | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U        | 1 U       | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        |
| Toluene                        | 600                       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.9 J      | 0.4 J     | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 0.64 J     |
| 1,1,1-Trichloroethane          | 30                        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U        | 5 U       | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        |
| 1,1,2-Trichloroethane          | 3                         | 3 U       | 3 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 3 U        | 3 U       | 3 U       | 3 U        | 0.2 U    | 3 U        | 3 U       | 3 U        | 1 U      | 1 U        |
| Trichloroethene                | 1                         | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U        | 0.6 J     | 0.7 J     | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U      | 0.44 J     |
| Trichlorofluoromethane         | 2000                      | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U        | 5 U       | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        |
| Vinyl chloride                 | 1                         | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 5 U        | 5 U       | 5 U       | 1.0 J      | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        |
| Xylene (total)                 | 1000                      | 5 U       | 5 U        | 3 U      | 3 U        | 3 U       | 3 U        | 3 U        | 5 U        | 5 U       | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 3 U      | 3 U        |
| Total VOCs                     | -                         | ND        | ND         | ND       | 0.4 J      | ND        | ND         | 1.3        | 3.6 J      | 1 J       | 4.7 J     | 4.9 J      | 1.5      | 1.0 J      | 0.9 J     | ND         | ND       | 2.4 J      |

### Notes:

U Not Detected Above Detection Limits
-- Not Sampled
Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds regulatory criteria

Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 17 of 26

| Sample ID                      | NJ CLASS IIA              | MW-23D    | MW-23D     | MW-23D     | MW-23D     | MW-23I    | MW-23I     | MW-231        | MW-23I    | MW-23I     | MW-23I   | MW-23I     | MW-23I    | MW-23I     | MW-23I      | MW-23I          | MW-23I          | MW-23I      |
|--------------------------------|---------------------------|-----------|------------|------------|------------|-----------|------------|---------------|-----------|------------|----------|------------|-----------|------------|-------------|-----------------|-----------------|-------------|
| Sample Date                    | GROUNDWATER QUALITY       | 6/30/2010 | 12/16/2010 | 12/29/2011 | 12/20/2012 | 6/29/2004 | 12/21/2004 | 6/28/2005     | 6/21/2006 | 12/20/2006 | 7/6/2007 | 12/27/2007 | 6/24/2008 | 12/19/2008 | 7/2/2009    | 12/23/2009      | 6/30/2010       | 12/16/2010  |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L      | ug/L       | ug/L       | ug/L       | ug/L      | ug/L       | ug/L          | ug/L      | ug/L       | ug/L     | ug/L       | ug/L      | ug/L       | ug/L        | ug/L            | ug/L            | ug/L        |
| (VOCs)                         |                           |           |            |            |            |           |            |               |           |            |          |            |           |            |             |                 |                 |             |
| Acetone                        | 6000                      | NA        | NA         | NA         | 5 U        | NA        | NA         | NA            | NA        | NA         | NA       | NA         | NA        | NA         | NA          | NA              | NA              | NA          |
| Benzene                        | 1                         | 1 U       | 1 U        | 0.15 J     | 0.36 J     | 1 U       | 1 U        | 1 U [1 U]     | 1 U       | 1.0        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U [1 U]   | 0.39 J [0.43 J] | 1 U [1 U]       | 1 U [1 U]   |
| Bromodichloromethane           | 1                         | 1 U       | 1 U        | 1 U        | 1 U        | 1 U       | 1 U        | 1 U [1 U]     | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| Bromoform                      | 4                         | 1 U       | 1 U        | 1 U        | NA         | 4 U       | 4 U        | 4 U [4 U]     | 4 U       | 4 U        | 0.2 U    | 4 U        | 4 U       | 4 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| Bromomethane                   | 10                        | 1 U       | 1 U        | 1 U        | NA         | 5 U       | 5 U        | 5 U [5 U]     | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| 2- Butanone                    | 300                       | NA        | NA         | NA         | 5 U        | NA        | NA         | NA            | NA        | NA         | NA       | NA         | NA        | NA         | NA          | NA              | NA              | NA          |
| Carbon Disulfide               | 700                       | NA        | NA         | NA         | 1 U        | NA        | NA         | NA            | NA        | NA         | NA       | NA         | NA        | NA         | NA          | NA              | NA              | NA          |
| Carbon tetrachloride           | 1                         | 1 U       | 1 U        | 1 U        | 1 U        | 2 U       | 2 U        | 2 U [2 U]     | 2 U       | 2 U        | 0.3 U    | 2 U        | 2 U       | 2 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| Chlorobenzene                  | 50                        | 1 U       | 1 U        | 1 U        | NA         | 5 U       | 5 U        | 5 U [5 U]     | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| Chloroethane                   | -                         | 1 U       | 1 U        | 1 U        | 1 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| 2-Chloroethyl vinyl ether      | -                         | 1 U       | 1 U        | 1 U        | NA         | 5 U       | 5 U        | 5 U [5 U]     | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| Chloroform                     | 70                        | 1 U       | 1 U        | 1 U        | 1 U        | 4.8       | 0.6 J      | 5 U [5 U]     | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| Chloromethane                  | -                         | 1 U       | 1 U        | 1 U        | NA         | 5 U       | 5 U        | 5 U [5 U]     | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| Dibromochloromethane           | 1                         | 1 U       | 1 U        | 1 U        | 1 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| 1,1-Dichloroethane             | 50                        | 1 U       | 1 U        | 1 U        | 1 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| 1,2-Dichloroethane             | 2                         | 1 U       | 1 U        | 1 U        | 1 U        | 2 U       | 2.6        | 1.2 J [1.2 J] | 0.6 J     | 2 U        | 0.3 U    | 2 U        | 0.8 J     | 2 U        | 1 U [1 U]   | 1 U [1 U]       | 0.26 J [0.30 J] | 1 U [1 U]   |
| 1,1-Dichloroethene             | 1                         | 0.40 J    | 1 U        | 0.49 J     | 1 U        | 0.7 J     | 1.3 J      | 1.0 J [1.0 J] | 1.1 J     | 2 U        | 0.5 U    | 2 U        | 0.5 J     | 2 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| cis-1,2-Dichloroethene         | 70                        | 1 U       | 1 U        | 1 U        | 1 U        | 0.9 J     | 5 U        | 5 U [5 U]     | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| trans-1,2-Dichloroethene       | 100                       | 1 U       | 1 U        | 1 U        | 1 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| 1,2-Dichloropropane            | 1                         | 1 U       | 1 U        | 1 U        | NA         | 1 U       | 1 U        | 1 U [1 U]     | 1 U       | 1 U        | 0.5 U    | 1 U        | 1 U       | 1 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| cis-1,3-Dichloropropene        | -                         | 1 U       | 1 U        | 1 U        | NA         | 5 U       | 5 U        | 5 U [5 U]     | 5 U       | 5 U        | 0.1 U    | 5 U        | 5 U       | 5 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| trans-1,3-Dichloropropene      | -                         | 1 U       | 1 U        | 1 U        | NA         | 5 U       | 5 U        | 5 U [5 U]     | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| Ethylbenzene                   | 700                       | 1 U       | 1 U        | 1 U        | 1 U        | 4 U       | 4 U        | 4 U [4 U]     | 4 U       | 4 U        | 0.4 U    | 4 U        | 4 U       | 4 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| Methyl tert-butyl ether (MTBE) | 70                        | 1 U       | 1 U        | 1 U        | 1 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| Methylene chloride             | 3                         | 1 U       | 1 U        | 1 U        | 1 U        | 2.4 J     | 3 U        | 3 U [3 U]     | 3 U       | 3 U        | 0.4 U    | 3 U        | 3 U       | 3 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| t-Butyl Alcohol (TBA)          | 100                       | 20 U      | 20 U       | 20 U       | NA         | 100 U     | 100 U      | 100 U [100 U] | 100 U     | 100 U      | 6.5 U    | 100 U      | 100 U     | 14 J       | 20 U [20 U] | 20 U [20 U]     | 20 U [20 U]     | 20 U [20 U] |
| 1,1,2,2-Tetrachloroethane      | 1                         | 1 U       | 1 U        | 1 U        | 1 U        | 1 U       | 1 U        | 1 U [1 U]     | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| Tetrachloroethene              | 1                         | 1 U       | 1 U        | 1 U        | 1 U        | 1 U       | 1 U        | 1 U [1 U]     | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| Toluene                        | 600                       | 1 U       | 1 U        | 1 U        | 1 U        | 5 U       | 2.5 J      | 0.5 J [0.5 J] | 1.2 J     | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U [1 U]   | 0.23 J [0.35 J] | 1 U [1 U]       | 1 U [1 U]   |
| 1,1,1-Trichloroethane          | 30                        | 1 U       | 1 U        | 1 U        | 1 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| 1,1,2-Trichloroethane          | 3                         | 1 U       | 1 U        | 1 U        | 1 U        | 3 U       | 3 U        | 3 U [3 U]     | 3 U       | 3 U        | 0.2 U    | 3 U        | 3 U       | 3 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| Trichloroethene                | 1                         | 1 U       | 1 U        | 1 U        | 1 U        | 1.2       | 0.9 J      | 0.9 J [1.0 J] | 0.7 J     | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| Trichlorofluoromethane         | 2000                      | 1 U       | 1 U        | 1 U        | NA         | 5 U       | 5 U        | 5 U [5 U]     | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| Vinyl chloride                 | 1                         | 1 U       | 1 U        | 1 U        | 1 U        | 5 U       | 5 U        | 5 U [5 U]     | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U [1 U]   | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]   |
| Xylene (total)                 | 1000                      | 3 U       | 3 U        | 3 U        | 3 U        | 5 U       | 5 U        | 5 U [5 U]     | 0.9 J     | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 3 U [3 U]   | 3 U [3 U]       | 3 U [3 U]       | 3 U [3 U]   |
| Total VOCs                     | -                         | 0.40 J    | ND         | 0.64 J     | 0.36 J     | 10 J      | 7.9 J      | 3.6 J [3.7 J] | 4.5 J     | 1.0        | ND       | ND         | 1.3 J     | 14 J       | ND [ND]     | 0.62 J [0.78 J] | 0.26 J [0.30 J] | ND [ND]     |

### Notes:

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds regulatory criteria

Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 18 of 26

| Sample ID                      | NJ CLASS IIA              | MW-23I     | MW-23I     | MW-23S      | MW-23S        | MW-23S    | MW-23S    | MW-23S     | MW-23S   | MW-23S     | MW-23S    | MW-23S     | MW-23S   | MW-23S     | MW-23S    | MW-23S     | MW-23S     | MW-23S    |
|--------------------------------|---------------------------|------------|------------|-------------|---------------|-----------|-----------|------------|----------|------------|-----------|------------|----------|------------|-----------|------------|------------|-----------|
| Sample Date                    | GROUNDWATER QUALITY       | 12/29/2011 | 12/20/2012 | 6/29/2004   | 12/21/2004    | 6/28/2005 | 6/21/2006 | 12/20/2006 | 7/6/2007 | 12/27/2007 | 6/24/2008 | 12/19/2008 | 7/2/2009 | 12/23/2009 | 6/30/2010 | 12/16/2010 | 12/29/2011 | 8/16/2012 |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L       | ug/L       | ug/L        | ug/L          | ug/L      | ug/L      | ug/L       | ug/L     | ug/L       | ug/L      | ug/L       | ug/L     | ug/L       | ug/L      | ug/L       | ug/L       | ug/L      |
| (VOCs)                         |                           |            |            |             |               |           |           |            |          |            |           |            |          |            |           |            |            |           |
| Acetone                        | 6000                      | NA         | 33         | NA          | NA            | NA        | NA        | NA         | NA       | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA         | 48        |
| Benzene                        | 1                         | 1 U        | 1 U        | 10 U [10 U] | 25 U [25 U]   | 5 U       | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 0.16 J     | 0.20 J     | 0.56 J    |
| Bromodichloromethane           | 1                         | 1 U        | 1 U        | 10 U [10 U] | 25 U [25 U]   | 5 U       | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       |
| Bromoform                      | 4                         | 1 U        | NA         | 40 U [40 U] | 100 U [100 U] | 20 U      | 4 U       | 4 U        | 0.2 U    | 4 U        | 4 U       | 4 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | NA        |
| Bromomethane                   | 10                        | 1 U        | NA         | 50 U [50 U] | 120 U [120 U] | 25 U      | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | NA        |
| 2- Butanone                    | 300                       | NA         | 5 U        | NA          | NA            | NA        | NA        | NA         | NA       | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA         | 2.8 J     |
| Carbon Disulfide               | 700                       | NA         | 1 U        | NA          | NA            | NA        | NA        | NA         | NA       | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA         | 1 U       |
| Carbon tetrachloride           | 1                         | 1 U        | 1 U        | 20 U [20 U] | 50 U [50 U]   | 10 U      | 2 U       | 2 U        | 0.3 U    | 2 U        | 2 U       | 2 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       |
| Chlorobenzene                  | 50                        | 1 U        | NA         | 50 U [50 U] | 120 U [120 U] | 25 U      | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | NA        |
| Chloroethane                   | -                         | 1 U        | 1 U        | 50 U [50 U] | 120 U [120 U] | 25 U      | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       |
| 2-Chloroethyl vinyl ether      | -                         | 1 U        | NA         | 50 U [50 U] | 120 U [120 U] | 25 U      | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | NA       | NA         | NA        | NA         | NA         | NA        |
| Chloroform                     | 70                        | 1 U        | 1 U        | 29 J [23 J] | 37 J [38 J]   | 32        | 22        | 14         | 14       | 6.1        | 3.6 J     | 0.8 J      | 1.0      | 1.6        | 4.0       | 4.5        | 3.8        | 1 U       |
| Chloromethane                  | -                         | 1 U        | NA         | 50 U [50 U] | 120 U [120 U] | 25 U      | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | NA        |
| Dibromochloromethane           | 1                         | 1 U        | 1 U        | 50 U [50 U] | 120 U [120 U] | 25 U      | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       |
| 1,1-Dichloroethane             | 50                        | 1 U        | 1 U        | 50 U [50 U] | 120 U [120 U] | 25 U      | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 0.17 J     | 1 U        | 1 U       |
| 1,2-Dichloroethane             | 2                         | 0.56 J     | 1 U        | 230 [220]   | 220 [220]     | 240       | 110       | 51         | 46       | 19         | 11        | 4.2        | 5.2      | 8.9        | 21        | 30         | 27         | 1 U       |
| 1,1-Dichloroethene             | 1                         | 0.20 J     | 1 U        | 20 U [20 U] | 50 U [50 U]   | 10 U      | 2 U       | 2 U        | 0.5 U    | 2 U        | 2 U       | 2 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.53 J    |
| cis-1,2-Dichloroethene         | 70                        | 1 U        | 1 U        | 68 [74]     | 50 J [49 J]   | 45        | 28        | 11         | 14       | 4.7 J      | 2.0 J     | 0.4 J      | 2.2      | 2.9        | 12        | 15         | 9.9        | 1 U       |
| trans-1,2-Dichloroethene       | 100                       | 1 U        | 1 U        | 50 U [50 U] | 120 U [120 U] | 25 U      | 0.6 J     | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 0.20 J    | 1 U        | 1 U        | 1 U       |
| 1,2-Dichloropropane            | 1                         | 1 U        | NA         | 10 U [10 U] | 25 U [25 U]   | 5 U       | 1 U       | 1 U        | 0.5 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | NA        |
| cis-1,3-Dichloropropene        | -                         | 1 U        | NA         | 50 U [50 U] | 120 U [120 U] | 25 U      | 5 U       | 5 U        | 0.1 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | NA        |
| trans-1,3-Dichloropropene      | -                         | 1 U        | NA         | 50 U [50 U] | 120 U [120 U] | 25 U      | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | NA        |
| Ethylbenzene                   | 700                       | 1 U        | 1 U        | 40 U [40 U] | 100 U [100 U] | 20 U      | 4 U       | 4 U        | 0.4 U    | 4 U        | 4 U       | 4 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       |
| Methyl tert-butyl ether (MTBE) | 70                        | 1 U        | 1 U        | 50 U [50 U] | 120 U [120 U] | 25 U      | 0.5 J     | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | NA         | 1 U       | 1 U        | 1 U        | NA        |
| Methylene chloride             | 3                         | 1 U        | 1 U        | 1500 [1400] | 3200 [3200]   | 550       | 150       | 72         | 17       | 8.2        | 2.3 J     | 1.4 J      | 1 U      | 1 U        | 4.9       | 12         | 7.0        | 1 U       |
| t-Butyl Alcohol (TBA)          | 100                       | 20 U       | NA         | U]          | U]            | 500 U     | 100 U     | 100 U      | 6.5 U    | 100 U      | 100 U     | 100 U      | 20 U     | NA         | 20 U      | 20 U       | 20 U       | NA        |
| 1,1,2,2-Tetrachloroethane      | 1                         | 1 U        | 1 U        | 10 U [10 U] | 25 U [25 U]   | 5 U       | 1.3       | 1.0        | 1.0      | 0.4 J      | 1 U       | 1 U        | 1 U      | 0.21 J     | 0.53 J    | 0.51 J     | 0.58 J     | 1 U       |
| Tetrachloroethene              | 1                         | 1 U        | 1 U        | 10 U [10 U] | 25 U [25 U]   | 5 U       | 0.8 J     | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       |
| Toluene                        | 600                       | 1 U        | 1 U        | 50 U [50 U] | 120 U [120 U] | 25 U      | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       |
| 1,1,1-Trichloroethane          | 30                        | 1 U        | 1 U        | 50 U [50 U] | 120 U [120 U] | 25 U      | 1.0 J     | 0.6 J      | 0.6      | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 0.29 J     | 1 U       |
| 1,1,2-Trichloroethane          | 3                         | 1 U        | 1 U        | 30 U [30 U] | 75 U [75 U]   | 15 U      | 3 U       | 3 U        | 0.2 U    | 3 U        | 3 U       | 3 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       |
| Trichloroethene                | 1                         | 1 U        | 1 U        | 37 [36]     | 22 J [21 J]   | 24        | 13        | 5.4        | 6.4      | 2.1        | 1.4       | 1 U        | 0.68 J   | 0.66 J     | 5.2       | 8.9        | 1 U        | 1 U       |
| Trichlorofluoromethane         | 2000                      | 1 U        | NA         | 50 U [11 J] | 120 U [120 U] | 25 U      | 1.2 J     | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | NA       | NA         | NA        | NA         | 6.6        | NA        |
| Vinyl chloride                 | 1                         | 1 U        | 1 U        | 50 U [50 U] | 120 U [120 U] | 25 U      | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       |
| Xylene (total)                 | 1000                      | 3 U        | 3 U        | 50 U [50 U] | 120 U [120 U] | 25 U      | 0.6 J     | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 3 U      | 3 U        | 3 U       | 3 U        | 3 U        | 3 U       |
| Total VOCs                     | -                         | 0.76 J     | 33         | J]          | J]            | 891       | 329 J     | 155 J      | 99       | 40.5 J     | 20.3      | 6.8 J      | 9.1 J    | 14.3 J     | 47.8 J    | 71.2 J     | 55.4 J     | 51.89 J   |

### Notes:

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds

regulatory criteria Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 19 of 26

| Sample ID                      | NJ CLASS IIA              | MW-23S          | MW-24     | MW-24      | MW-24    | MW-24      | MW-24     | MW-24      | MW-24      | MW-24           | MW-24      | MW-25     | MW-25      | MW-25     | MW-25      | MW-25     | MW-25      | MW-25      |
|--------------------------------|---------------------------|-----------------|-----------|------------|----------|------------|-----------|------------|------------|-----------------|------------|-----------|------------|-----------|------------|-----------|------------|------------|
| Sample Date                    | GROUNDWATER QUALITY       | 12/20/2012      | 6/24/2008 | 12/19/2008 | 7/1/2009 | 12/23/2009 | 6/30/2010 | 12/16/2010 | 12/29/2011 | 7/10/2012       | 12/20/2012 | 6/24/2008 | 12/19/2008 | 6/30/2009 | 12/23/2009 | 6/29/2010 | 12/16/2010 | 12/29/2011 |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L            | ug/L      | ug/L       | ug/L     | ug/L       | ug/L      | ug/L       | ug/L       | ug/L            | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L       |
| (VOCs)                         |                           |                 |           |            |          |            |           |            |            |                 |            |           |            |           |            |           |            |            |
| Acetone                        | 6000                      | 5 U [5 U]       | NA        | NA         | NA       | NA         | NA        | NA         | NA         | 5 U [5 U]       | 5 U        | NA        | NA         | NA        | NA         | NA        | NA         | NA         |
| Benzene                        | 1                         | 0.12 J [0.10 J] | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 0.14 J [0.13 J] | 0.5 J      | 1 U       | 1 U        | 1 U       | 0.41 J     | 1 U       | 0.44 J     | 1 U        |
| Bromodichloromethane           | 1                         | 1 U [1 U]       | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U [1 U]       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        |
| Bromoform                      | 4                         | NA              | 4 U       | 4 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | NA [NA]         | NA         | 4 U       | 4 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        |
| Bromomethane                   | 10                        | NA              | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | NA [NA]         | NA         | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        |
| 2- Butanone                    | 300                       | 5 U [5 U]       | NA        | NA         | NA       | NA         | NA        | NA         | NA         | 5 U [5 U]       | 5 U        | NA        | NA         | NA        | NA         | NA        | NA         | NA         |
| Carbon Disulfide               | 700                       | 1 U [1 U]       | NA        | NA         | NA       | NA         | NA        | NA         | NA         | 1 U [1 U]       | 1 U        | NA        | NA         | NA        | NA         | NA        | NA         | NA         |
| Carbon tetrachloride           | 1                         | 1 U [1 U]       | 2 U       | 2 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U [1 U]       | 1 U        | 0.5 J     | 0.7 J      | 1 U       | 0.21 J     | 0.55 J    | 1 U        | 0.40 J     |
| Chlorobenzene                  | 50                        | NA              | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | NA [NA]         | NA         | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        |
| Chloroethane                   | -                         | 1 U [1 U]       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U [1 U]       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        |
| 2-Chloroethyl vinyl ether      | =                         | NA              | 5 U       | 5 U        | NA       | NA         | NA        | NA         | 1 U        | NA [NA]         | NA         | 5 U       | 5 U        | NA        | NA         | NA        | NA         | NA         |
| Chloroform                     | 70                        | 0.57 J [0.55 J] | 5 U       | 5 U        | 1 U      | 0.25 J     | 1 U       | 1 U        | 1 U        | 0.13 J [0.13 J] | 1 U        | 5.0       | 1.9 J      | 5.7       | 2.4        | 3.0       | 0.49 J     | 1.4        |
| Chloromethane                  | =                         | NA              | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | NA [NA]         | NA         | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        |
| Dibromochloromethane           | 1                         | 1 U [1 U]       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U [1 U]       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        |
| 1,1-Dichloroethane             | 50                        | 1 U [1 U]       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U [1 U]       | 1 U        | 5 U       | 5 U        | 1 U       | 0.41 J     | 1 U       | 0.24 J     | 1 U        |
| 1,2-Dichloroethane             | 2                         | 5.5 [5.5]       | 2 U       | 2 U        | 1 U      | 1 U        | 1 U       | 1.4        | 1 U        | 1 U [1 U]       | 1 U        | 4.5       | 0.6 J      | 2.8       | 34         | 4.7       | 45         | 8.2        |
| 1,1-Dichloroethene             | 1                         | 1 U [1 U]       | 2 U       | 2 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U [1 U]       | 1 U        | 2 U       | 2 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        |
| cis-1,2-Dichloroethene         | 70                        | 1.1 [1.1]       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U [1 U]       | 1 U        | 8.7       | 1.3 J      | 13        | 14         | 14        | 3.0        | 4.3        |
| trans-1,2-Dichloroethene       | 100                       | 1 U [1 U]       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U [1 U]       | 1 U        | 5 U       | 5 U        | 1 U       | 0.28 J     | 0.23 J    | 0.27 J     | 1 U        |
| 1,2-Dichloropropane            | 1                         | NA              | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | NA [NA]         | NA         | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        |
| cis-1,3-Dichloropropene        | •                         | NA              | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | NA [NA]         | NA         | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        |
| trans-1,3-Dichloropropene      | -                         | NA              | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | NA [NA]         | NA         | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        |
| Ethylbenzene                   | 700                       | 1 U [1 U]       | 4 U       | 4 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U [1 U]       | 1 U        | 4 U       | 4 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        |
| Methyl tert-butyl ether (MTBE) | 70                        | 1 U [1 U]       | 5 U       | 5 U        | 1 U      | NA         | 1 U       | 1 U        | 1 U        | 1 U [1 U]       | 1 U        | 5 U       | 5 U        | 1 U       | NA         | 1 U       | 1 U        | 1 U        |
| Methylene chloride             | 3                         | 1.8 [1.7]       | 3 U       | 3 U        | 1 U      | 1 U        | 1 U       | 1.7        | 1 U        | 1 U [1 U]       | 1 U        | 3 U       | 3 U        | 1 U       | 2.5        | 0.82 J    | 1.1        | 1.6        |
| t-Butyl Alcohol (TBA)          | 100                       | NA              | 100 U     | 100 U      | 20 U     | NA         | 20 U      | 20 U       | 20 U       | NA [NA]         | NA         | 100 U     | 100 U      | 20 U      | NA         | 20 U      | 20 U       | 5.2 J      |
| 1,1,2,2-Tetrachloroethane      | 1                         | 1 U [1 U]       | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 0.13 J     | 0.21 J [0.18 J] | 1 U        | 1 U       | 1 U        | 1 U       | 0.34 J     | 1 U       | 1 U        | 0.11 J     |
| Tetrachloroethene              | 1                         | 1 U [1 U]       | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U [1 U]       | 0.12 J     | 0.6 J     | 1 U        | 0.63 J    | 0.55 J     | 1.1       | 0.39 J     | 0.41 J     |
| Toluene                        | 600                       | 1 U [1 U]       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U [1 U]       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        |
| 1,1,1-Trichloroethane          | 30                        | 1 U [1 U]       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U [1 U]       | 1 U        | 0.7 J     | 5 U        | 1 U       | 1.3        | 0.58 J    | 1.2        | 1 U        |
| 1,1,2-Trichloroethane          | 3                         | 1 U [1 U]       | 3 U       | 3 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U [1 U]       | 1 U        | 3 U       | 3 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        |
| Trichloroethene                | 1                         | 1.2 [1.2]       | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       | 0.52 J     | 1 U        | 1 U [1 U]       | 1 U        | 8.0       | 1.2        | 9.7       | 41         | 9.6       | 37         | 1 U        |
| Trichlorofluoromethane         | 2000                      | NA              | 5 U       | 5 U        | NA       | NA         | NA        | NA         | 1 U        | NA [NA]         | NA         | 5 U       | 5 U        | NA        | NA         | NA        | NA         | 4.8        |
| Vinyl chloride                 | 1                         | 1 U [1 U]       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       | 1 U        | 1 U        | 1 U [1 U]       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        |
| Xylene (total)                 | 1000                      | 3 U [3 U]       | 5 U       | 5 U        | 3 U      | 3 U        | 3 U       | 3 U        | 3 U        | 3 U [3 U]       | 3 U        | 5 U       | 5 U        | 3 U       | 3 U        | 3 U       | 1.0 J      | 3 U        |
| Total VOCs                     | -                         | J]              | ND        | ND         | ND       | 0.25 J     | ND        | 3.62 J     | 0.13 J     | 0.48 J [0.44 J] | 0.62 J     | 28 J      | 5.7 J      | 31.8 J    | 97.4 J     | 34.6 J    | 90.1 J     | 26.4 J     |

### Notes:

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds regulatory criteria

Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 20 of 26

| Sample ID                      | NJ CLASS IIA              | MW-25     | MW-25      | MW-26     | MW-26      | MW-26     | MW-26      | MW-26     | MW-26      | MW-26      | MW-26     | MW-26      | MW-27     | MW-27      | MW-27     | MW-27      | MW-27     | MW-27      |
|--------------------------------|---------------------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|
| Sample Date                    | GROUNDWATER QUALITY       | 7/11/2012 | 12/20/2012 | 6/24/2008 | 12/19/2008 | 6/30/2009 | 12/23/2009 | 6/29/2010 | 12/16/2010 | 12/29/2011 | 7/11/2012 | 12/20/2012 | 6/24/2008 | 12/19/2008 | 6/30/2009 | 12/23/2009 | 6/29/2010 | 12/16/2010 |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       |
| (VOCs)                         |                           |           |            |           |            |           |            |           |            |            |           | <u> </u>   |           |            |           |            |           |            |
| Acetone                        | 6000                      | 5 U       | 5 U        | NA        | NA         | NA        | NA         | NA        | NA         | NA         | 5 U       | 5 U        | NA        | NA         | NA        | NA         | NA        | NA         |
| Benzene                        | 1                         | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.74 J    | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| Bromodichloromethane           | 1                         | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| Bromoform                      | 4                         | NA        | NA         | 4 U       | 4 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 4 U       | 4 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| Bromomethane                   | 10                        | NA        | NA         | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| 2- Butanone                    | 300                       | 5 U       | 5 U        | NA        | NA         | NA        | NA         | NA        | NA         | NA         | 5 U       | 5 U        | NA        | NA         | NA        | NA         | NA        | NA         |
| Carbon Disulfide               | 700                       | 1 U       | 1 U        | NA        | NA         | NA        | NA         | NA        | NA         | NA         | 1 U       | 1 U        | NA        | NA         | NA        | NA         | NA        | NA         |
| Carbon tetrachloride           | 1                         | 0.55 J    | 1 U        | 2 U       | 9.8        | 3.4       | 1.6        | 1 U       | 1.0        | 1.3        | 1.6       | 0.44 J     | 2 U       | 2 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| Chlorobenzene                  | 50                        | NA        | NA         | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| Chloroethane                   | -                         | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| 2-Chloroethyl vinyl ether      | -                         | NA        | NA         | 5 U       | 5 U        | NA        | NA         | NA        | NA         | 1 U        | NA        | NA         | 5 U       | 5 U        | NA        | NA         | NA        | NA         |
| Chloroform                     | 70                        | 1.4       | 0.56 J     | 2.8 J     | 10         | 8.0       | 3.8        | 1.2       | 0.67 J     | 2.6        | 3.9       | 0.75 J     | 5 U       | 0.7 J      | 2.0       | 2.1        | 0.48 J    | 0.20 J     |
| Chloromethane                  | -                         | NA        | NA         | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| Dibromochloromethane           | 1                         | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| 1,1-Dichloroethane             | 50                        | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| 1,2-Dichloroethane             | 2                         | 6.2       | 7.6        | 20        | 2          | 40        | 16         | 120       | 28         | 6.8        | 11        | 10         | 2 U       | 2 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| 1,1-Dichloroethene             | 1                         | 1 U       | 1 U        | 2 U       | 2 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 2 U       | 2 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| cis-1,2-Dichloroethene         | 70                        | 8.2       | 29         | 8.2       | 5 U        | 1.4       | 2.1        | 11        | 4.4        | 0.34 J     | 6         | 3.9        | 5 U       | 4.3 J      | 1 U       | 1 U        | 1 U       | 1 U        |
| trans-1,2-Dichloroethene       | 100                       | 1 U       | 1.5        | 5 U       | 5 U        | 1 U       | 1 U        | 0.22 J    | 1 U        | 1 U        | 0.44 J    | 1 U        | 5 U       | 0.5 J      | 1 U       | 1 U        | 1 U       | 1 U        |
| 1,2-Dichloropropane            | 1                         | NA        | NA         | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| cis-1,3-Dichloropropene        | -                         | NA        | NA         | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| trans-1,3-Dichloropropene      | -                         | NA        | NA         | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| Ethylbenzene                   | 700                       | 1 U       | 1 U        | 4 U       | 4 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 4 U       | 4 U        | 1 U       | 1 U        | 1 U       | 1.0        |
| Methyl tert-butyl ether (MTBE) | 70                        | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | NA         | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | NA         | 1 U       | 1 U        |
| Methylene chloride             | 3                         | 1.9       | 2.6        | 1.2 J     | 3 U        | 1.1       | 0.85 J     | 16        | 2.1        | 0.37 J     | 1.1       | 1.3        | 3 U       | 3 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| t-Butyl Alcohol (TBA)          | 100                       | NA        | NA         | 100 U     | 100 U      | 20 U      | NA         | 20 U      | 20 U       | 20 U       | NA        | NA         | 100 U     | 100 U      | 20 U      | NA         | 20 U      | 20 U       |
| 1,1,2,2-Tetrachloroethane      | 1                         | 1 U       | 1 U        | 1 U       | 3.0        | 3.0       | 1.8        | 2.4       | 0.43 J     | 1.5        | 1.7       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| Tetrachloroethene              | 1                         | 0.38 J    | 0.73 J     | 0.4 J     | 4.7        | 0.79 J    | 0.62 J     | 0.71 J    | 0.92 J     | 0.42 J     | 0.44 J    | 0.28 J     | 5.2       | 1 U        | 1 U       | 0.65 J     | 0.35 J    | 0.60 J     |
| Toluene                        | 600                       | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| 1,1,1-Trichloroethane          | 30                        | 1 U       | 0.21 J     | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 0.35 J     | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| 1,1,2-Trichloroethane          | 3                         | 1 U       | 1 U        | 3 U       | 3 U        | 1 U       | 1 U        | 0.34 J    | 1 U        | 1 U        | 1 U       | 1 U        | 3 U       | 3 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| Trichloroethene                | 1                         | 6         | 27         | 6.8       | 1.2        | 2.1       | 1.6        | 9.0       | 17         | 1 U        | 7.3       | 4.7        | 10        | 57         | 16        | 8.5        | 4.7       | 4.7        |
| Trichlorofluoromethane         | 2000                      | NA        | NA         | 5 U       | 5 U        | NA        | NA         | NA        | NA         | 1.2        | NA        | NA         | 5 U       | 5 U        | NA        | NA         | NA        | NA         |
| Vinyl chloride                 | 1                         | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        |
| Xylene (total)                 | 1000                      | 3 U       | 3 U        | 5 U       | 5 U        | 3 U       | 3 U        | 3 U       | 3 U        | 3 U        | 3 U       | 3 U        | 5 U       | 5 U        | 3 U       | 3 U        | 3 U       | 2.4 J      |
| Total VOCs                     | -                         | 24.63 J   | 69.2 J     | 39.4 J    | 30.7       | 59.8 J    | 28.4 J     | 161.6 J   | 54.9 J     | 14.5 J     | 33.48 J   | 21.37 J    | 15.2      | 62.5 J     | 18        | 11.3 J     | 5.53 J    | 8.9 J      |

### Notes:

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds regulatory criteria

Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 21 of 26

| Sample ID                      | NJ CLASS IIA              | MW-27      | MW-27     | MW-27      | MW-28     | MW-28      | MW-28     | MW-28      | MW-28     | MW-28      | MW-28      | MW-28     | MW-28      | PZ-1S      | PZ-1S    | PZ-1S      | PZ-1S      | PZ-1S      |
|--------------------------------|---------------------------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|------------|-----------|------------|------------|----------|------------|------------|------------|
| Sample Date                    | GROUNDWATER QUALITY       | 12/29/2011 | 7/10/2012 | 12/20/2012 | 6/24/2008 | 12/19/2008 | 6/30/2009 | 12/23/2009 | 6/29/2010 | 12/16/2010 | 12/29/2011 | 7/11/2012 | 12/20/2012 | 12/19/2008 | 7/1/2009 | 12/23/2009 | 6/30/2010  | 12/16/2010 |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L       | ug/L      | ug/L       | ug/L       | ug/L     | ug/L       | ug/L       | ug/L       |
| (VOCs)                         |                           | <u> </u>   |           | · 0,       |           | - J.       |           | · 0,       |           | <u></u>    | - J.       |           | <i>.</i>   | - 5,       | <u> </u> |            | - <u>U</u> | J.         |
| Acetone                        | 6000                      | NA         | 5 U       | 5 U        | NA        | NA         | NA        | NA         | NA        | NA         | NA         | 5 U       | 5 U        | NA         | NA       | NA         | NA         | NA         |
| Benzene                        | 1                         | 0.31 J     | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 0.4 J      | 1 U      | 1 U        | 1 U        | 0.39 J     |
| Bromodichloromethane           | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U        | 1 U      | 1 U        | 1 U        | 1 U        |
| Bromoform                      | 4                         | 1 U        | NA        | NA         | 4 U       | 4 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 4 U        | 1 U      | 1 U        | 1 U        | 1 U        |
| Bromomethane                   | 10                        | 1 U        | NA        | NA         | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U        | 1 U      | 1 U        | 1 U        | 1 U        |
| 2- Butanone                    | 300                       | NA         | 5 U       | 5 U        | NA        | NA         | NA        | NA         | NA        | NA         | NA         | 5 U       | 5 U        | NA         | NA       | NA         | NA         | NA         |
| Carbon Disulfide               | 700                       | NA         | 1 U       | 1 U        | NA        | NA         | NA        | NA         | NA        | NA         | NA         | 1 U       | 1 U        | NA         | NA       | NA         | NA         | NA         |
| Carbon tetrachloride           | 1                         | 1 U        | 1 U       | 1 U        | 2 U       | 2 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 2 U        | 1 U      | 1 U        | 1 U        | 1 U        |
| Chlorobenzene                  | 50                        | 1 U        | NA        | NA         | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U        | 1 U      | 1 U        | 1 U        | 1 U        |
| Chloroethane                   | -                         | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U        | 1 U      | 1 U        | 1 U        | 1 U        |
| 2-Chloroethyl vinyl ether      | -                         | NA         | NA        | NA         | 5 U       | 5 U        | NA        | NA         | NA        | NA         | NA         | NA        | NA         | 5 U        | 1 U      | NA         | 1 U        | NA         |
| Chloroform                     | 70                        | 0.27 J     | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | 0.67 J     | 1 U       | 0.59 J     | 1 U        | 1 U       | 1 U        | 3.0 J      | 0.46 J   | 0.16 J     | 1 U        | 0.31 J     |
| Chloromethane                  | -                         | 1 U        | NA        | NA         | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U        | 1 U      | 1 U        | 1 U        | 1 U        |
| Dibromochloromethane           | 1                         | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U        | 1 U      | 1 U        | 1 U        | 1 U        |
| 1,1-Dichloroethane             | 50                        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U        | 1 U      | 1 U        | 1 U        | 1 U        |
| 1,2-Dichloroethane             | 2                         | 1 U        | 1 U       | 1 U        | 2 U       | 2 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 20         | 4.9      | 6.3        | 3.2        | 32         |
| 1,1-Dichloroethene             | 1                         | 1 U        | 1 U       | 1 U        | 2 U       | 2 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 2 U        | 1 U      | 1 U        | 1 U        | 1 U        |
| cis-1,2-Dichloroethene         | 70                        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 7.1        | 0.94 J   | 0.39 J     | 0.61 J     | 0.99 J     |
| trans-1,2-Dichloroethene       | 100                       | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U        | 1 U      | 1 U        | 1 U        | 1 U        |
| 1,2-Dichloropropane            | 1                         | 1 U        | NA        | NA         | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 1 U        | 1 U      | 1 U        | 1 U        | 1 U        |
| cis-1,3-Dichloropropene        | -                         | 1 U        | NA        | NA         | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U        | 1 U      | 1 U        | 1 U        | 1 U        |
| trans-1,3-Dichloropropene      | -                         | 1 U        | NA        | NA         | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | NA        | NA         | 5 U        | 1 U      | 1 U        | 1 U        | 1 U        |
| Ethylbenzene                   | 700                       | 1 U        | 1 U       | 1 U        | 4 U       | 4 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 4 U        | 1 U      | 1 U        | 1 U        | 1 U        |
| Methyl tert-butyl ether (MTBE) | 70                        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | NA         | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U        | 1 U      | NA         | 1 U        | 1 U        |
| Methylene chloride             | 3                         | 1 U        | 1 U       | 1 U        | 3 U       | 3 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 0.9 J      | 1 U      | 2.4        | 1 U        | 0.69 J     |
| t-Butyl Alcohol (TBA)          | 100                       | 20 U       | NA        | NA         | 100 U     | 100 U      | 20 U      | NA         | 20 U      | 20 U       | 20 U       | NA        | NA         | 100 U      | 20 U     | NA         | 20 U       | 20 U       |
| 1,1,2,2-Tetrachloroethane      | 1                         | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 1 U        | 1 U      | 1 U        | 1 U        | 1 U        |
| Tetrachloroethene              | 1                         | 0.27 J     | 0.26 J    | 0.47 J     | 0.7 J     | 2.0        | 1.0       | 0.27 J     | 0.39 J    | 1 U        | 0.50 J     | 0.57 J    | 0.67 J     | 1 U        | 1 U      | 1 U        | 1 U        | 0.28 J     |
| Toluene                        | 600                       | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U        | 1 U      | 1 U        | 1 U        | 1 U        |
| 1,1,1-Trichloroethane          | 30                        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 0.7 J      | 1 U      | 1 U        | 1 U        | 0.80 J     |
| 1,1,2-Trichloroethane          | 3                         | 1 U        | 1 U       | 1 U        | 3 U       | 3 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 3 U        | 1 U      | 1 U        | 1 U        | 1 U        |
| Trichloroethene                | 1                         | 1 U        | 13        | 9.5        | 1 U       | 1 U        | 0.59 J    | 3.2        | 0.29 J    | 4.6        | 1 U        | 0.64 J    | 0.64 J     | 17         | 2.1      | 1.8        | 2.3        | 11         |
| Trichlorofluoromethane         | 2000                      | 9.6        | NA        | NA         | 5 U       | 5 U        | NA        | NA         | NA        | NA         | 0.47 J     | NA        | NA         | 5 U        | 1 U      | 1 U        | 1 U        | 1 U        |
| Vinyl chloride                 | 1                         | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U        | 1 U      | 1 U        | 1 U        | 1 U        |
| Xylene (total)                 | 1000                      | 3 U        | 3 U       | 3 U        | 5 U       | 5 U        | 3 U       | 3 U        | 3 U       | 3 U        | 3 U        | 3 U       | 3 U        | 0.2 J      | 3 U      | 3 U        | 3 U        | 3 U        |
| Total VOCs                     | -                         | 10.5 J     | 13.26 J   | 9.97 J     | 0.7 J     | 2          | 1.6 J     | 4.1 J      | 0.68 J    | 5.19 J     | 0.97 J     | 1.21 J    | 1.31 J     | 49.3 J     | 8.4 J    | 11.1 J     | 6.1 J      | 46.7 J     |

### Notes:

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds regulatory criteria

Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 22 of 26

| Sample ID                      | NJ CLASS IIA              | PZ-1S      | PZ-1S     | PZ-1S      | WCC-1M          | WCC-1M     | WCC-1M    | WCC-1M          | WCC-1M          | WCC-1M          | WCC-1M        | WCC-1M        | WCC-1M        | WCC-1M            | WCC-1M          | WCC-1M     | WCC-1M    |
|--------------------------------|---------------------------|------------|-----------|------------|-----------------|------------|-----------|-----------------|-----------------|-----------------|---------------|---------------|---------------|-------------------|-----------------|------------|-----------|
| Sample Date                    | GROUNDWATER QUALITY       | 12/29/2011 | 7/10/2012 | 12/20/2012 | 6/29/2004       | 12/20/2004 | 6/28/2005 | 12/21/2005      | 6/21/2006       | 12/20/2006      | 7/6/2007      | 12/27/2007    | 6/24/2008     | 12/19/2008        | 7/1/2009        | 12/23/2009 | 6/30/2010 |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L       | ug/L      | ug/L       | ug/L            | ug/L       | ug/L      | ug/L            | ug/L            | ug/L            | ug/L          | ug/L          | ug/L          | ug/L              | ug/L            | ug/L       | ug/L      |
| (VOCs)                         |                           |            |           |            |                 |            |           |                 |                 |                 |               |               |               |                   | <u> </u>        |            |           |
| Acetone                        | 6000                      | NA         | 5 U       | 5 U        | NA              | NA         | NA        | NA              | NA              | NA              | NA            | NA            | NA            | NA                | NA              | NA         | NA        |
| Benzene                        | 1                         | 1 U        | 1 U       | 1 U        | 1 U [1 U]       | 1 U        | 1 U       | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]       | 0.2 U [0.2 U] | 1 U [1 U]     | 1 U [1 U]     | 1 U [1 U]         | 1 U [1 U]       | 1 U        | 1 U       |
| Bromodichloromethane           | 1                         | 1 U        | 1 U       | 0.38 J     | 1 U [1 U]       | 1 U        | 1 U       | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]       | 0.2 U [0.2 U] | 1 U [1 U]     | 1 U [1 U]     | 1 U [1 U]         | 1 U [1 U]       | 1 U        | 1 U       |
| Bromoform                      | 4                         | 1 U        | NA        | NA         | 4 U [4 U]       | 4 U        | 4 U       | 4 U [4 U]       | 4 U [4 U]       | 4 U [4 U]       | 0.2 U [0.2 U] | 4 U [4 U]     | 4 U [4 U]     | 4 U [4 U]         | 1 U [1 U]       | 1 U        | 1 U       |
| Bromomethane                   | 10                        | 1 U        | NA        | NA         | 5 U [5 U]       | 5 U        | 5 U       | 5 U [5 U]       | 5 U [5 U]       | 5 U [5 U]       | 0.4 U [0.4 U] | 5 U [5 U]     | 5 U [5 U]     | 5 U [5 U]         | 1 U [1 U]       | 1 U        | 1 U       |
| 2- Butanone                    | 300                       | NA         | 5 U       | 5 U        | NA              | NA         | NA        | NA              | NA              | NA              | NA            | NA            | NA            | NA                | NA              | NA         | NA        |
| Carbon Disulfide               | 700                       | NA         | 1 U       | 1 U        | NA              | NA         | NA        | NA              | NA              | NA              | NA            | NA            | NA            | NA                | NA              | NA         | NA        |
| Carbon tetrachloride           | 1                         | 1 U        | 1 U       | 1 U        | 2 U [2 U]       | 2 U        | 2 U       | 2 U [2 U]       | 2 U [2 U]       | 2 U [2 U]       | 0.3 U [0.3 U] | 2 U [2 U]     | 2 U [2 U]     | 2 U [2 U]         | 1 U [1 U]       | 1 U        | 1 U       |
| Chlorobenzene                  | 50                        | 1 U        | NA        | NA         | 5 U [5 U]       | 5 U        | 5 U       | 5 U [5 U]       | 5 U [5 U]       | 5 U [5 U]       | 0.2 U [0.2 U] | 5 U [5 U]     | 5 U [5 U]     | 5 U [5 U]         | 1 U [1 U]       | 1 U        | 1 U       |
| Chloroethane                   |                           | 1 U        | 1 U       | 1 U        | 5 U [5 U]       | 5 U        | 5 U       | 5 U [5 U]       | 5 U [5 U]       | 5 U [5 U]       | 0.4 U [0.4 U] | 5 U [5 U]     | 5 U [5 U]     | 5 U [5 U]         | 1 U [1 U]       | 1 U        | 1 U       |
| 2-Chloroethyl vinyl ether      | -                         | 1 U        | NA        | NA         | 5 U [5 U]       | 5 U        | 5 U       | 5 U [5 U]       | 5 U [5 U]       | 5 U [5 U]       | 0.2 U [0.2 U] | 5 U [5 U]     | 5 U [5 U]     | 5 U [5 U]         | 1 U [1 U]       | 1 U        | NA        |
| Chloroform                     | 70                        | 0.18 J     | 1 U       | 1.6        | 1.8 J [1.8 J]   | 2.4 J      | 1.8 J     | 2.0 J [2.1 J]   | 1.0 J [1.3 J]   | 1.1 J [1.0 J]   | 0.7 [0.7]     | 1.2 J [1.1 J] | 0.6 J [0.6 J] | 0.9 J [0.8 J]     | 0.68 J [0.58 J] | 0.21 J     | 0.33 J    |
| Chloromethane                  | -                         | 1 U        | NA        | NA         | 5 U [5 U]       | 5 U        | 5 U       | 5 U [5 U]       | 5 U [5 U]       | 5 U [5 U]       | 0.4 U [0.4 U] | 5 U [5 U]     | 5 U [5 U]     | 5 U [5 U]         | 1 U [1 U]       | 1 U        | 1 U       |
| Dibromochloromethane           | 1                         | 1 U        | 1 U       | 1 U        | 5 U [5 U]       | 5 U        | 5 U       | 5 U [5 U]       | 5 U [5 U]       | 5 U [5 U]       | 0.3 U [0.3 U] | 5 U [5 U]     | 5 U [5 U]     | 5 U [5 U]         | 1 U [1 U]       | 1 U        | 1 U       |
| 1,1-Dichloroethane             | 50                        | 1 U        | 1 U       | 1 U        | 5 U [5 U]       | 5 U        | 5 U       | 5 U [5 U]       | 5 U [5 U]       | 5 U [5 U]       | 0.3 U [0.3 U] | 5 U [5 U]     | 5 U [5 U]     | 5 U [5 U]         | 1 U [1 U]       | 1 U        | 1 U       |
| 1,2-Dichloroethane             | 2                         | 5.0        | 0.24 J    | 4.8        | 14 [15]         | 34         | 11        | 44 [46]         | 12 [12]         | 35 [36]         | 5.6 [6.0]     | 55 [54]       | 8.9 [9.3]     | 90 [81]           | 29 [28]         | 19         | 7.5       |
| 1,1-Dichloroethene             | 1                         | 1 U        | 1 U       | 1 U        | 0.6 J [0.5 J]   | 0.6 J      | 0.8 J     | 2 U [2 U]       | 1.0 J [0.9 J]   | 0.6 J [0.6 J]   | 1.1 [1.0]     | 2 U [2 U]     | 1.0 J [0.9 J] | 2 U [2 U]         | 1 U [1 U]       | 0.31 J     | 0.39 J    |
| cis-1,2-Dichloroethene         | 70                        | 0.33 J     | 0.23 J    | 1.9        | 14 [15]         | 9          | 5.8       | 8.5 [8.5]       | 3.2 J [3.0 J]   | 6.3 [6.1 J]     | 4.1 [4.1]     | 11 [11]       | 1.0 J [1.0 J] | 11 [10]           | 4.4 [4.2]       | 3.1        | 1.3       |
| trans-1,2-Dichloroethene       | 100                       | 1 U        | 1 U       | 1 U        | 0.3 J [0.3 J]   | 5 U        | 5 U       | 5 U [5 U]       | 5 U [5 U]       | 5 U [5 U]       | 0.4 U [0.4 U] | 5 U [5 U]     | 5 U [5 U]     | 5 U [5 U]         | 1 U [1 U]       | 1 U        | 1 U       |
| 1,2-Dichloropropane            | 1                         | 1 U        | NA        | NA         | 1 U [1 U]       | 1 U        | 1 U       | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]       | 0.5 U [0.5 U] | 1 U [1 U]     | 1 U [1 U]     | 1 U [1 U]         | 1 U [1 U]       | 1 U        | 1 U       |
| cis-1,3-Dichloropropene        | -                         | 1 U        | NA        | NA         | 5 U [5 U]       | 5 U        | 5 U       | 5 U [5 U]       | 5 U [5 U]       | 5 U [5 U]       | 0.1 U [0.1 U] | 5 U [5 U]     | 5 U [5 U]     | 5 U [5 U]         | 1 U [1 U]       | 1 U        | 1 U       |
| trans-1,3-Dichloropropene      | -                         | 1 U        | NA        | NA         | 5 U [5 U]       | 5 U        | 5 U       | 5 U [5 U]       | 5 U [5 U]       | 5 U [5 U]       | 0.2 U [0.2 U] | 5 U [5 U]     | 5 U [5 U]     | 5 U [5 U]         | 1 U [1 U]       | 1 U        | 1 U       |
| Ethylbenzene                   | 700                       | 1 U        | 1 U       | 1 U        | 4 U [4 U]       | 4 U        | 4 U       | 4 U [4 U]       | 4 U [4 U]       | 4 U [4 U]       | 0.4 U [0.4 U] | 4 U [4 U]     | 4 U [4 U]     | 4 U [4 U]         | 1 U [1 U]       | 1 U        | 1 U       |
| Methyl tert-butyl ether (MTBE) | 70                        | 1 U        | 1 U       | 1 U        | 5 U [5 U]       | 5 U        | 5 U       | 5 U [5 U]       | 0.6 J [0.6 J]   | 5 U [5 U]       | 0.3 U [0.3 U] | 5 U [5 U]     | 5 U [5 U]     | 5 U [5 U]         | 1 U [1 U]       | 1 U        | 1 U       |
| Methylene chloride             | 3                         | 0.72 J     | 1 U       | 1.6        | 1.7 J [1.8 J]   | 1 J        | 3 U       | 1.1 J [1.2 J]   | 0.8 J [0.7 J]   | 0.7 J [0.7 J]   | 0.8 [0.8]     | 0.7 J [0.7 J] | 0.8 J [0.8 J] | 0.9 J [0.9 J]     | 1 U [1 U]       | 1 U        | 0.72 J    |
| t-Butyl Alcohol (TBA)          | 100                       | 20 U       | NA        | NA         | 100 U [100 U]   | 100 U      | 100 U     | 100 U [100 U]   | 100 U [100 U]   | 100 U [100 U]   | 6.5 U [6.5 U] | 100 U [100 U] | 100 U [100 U] | 7.9 J [10 J]      | 20 U [20 U]     | 20 U       | 20 U      |
| 1,1,2,2-Tetrachloroethane      | 1                         | 1 U        | 0.53 J    | 1 U        | 1.5 [1.3]       | 1.1        | 0.9 J     | 0.8 J [0.8 J]   | 1 U [0.5 J]     | 0.6 J [0.5 J]   | 0.4 [0.4]     | 0.7 J [0.7 J] | 1 U [1 U]     | 0.3 J [0.3 J]     | 1 U [0.29 J]    | 0.16 J     | 1 U       |
| Tetrachloroethene              | 1                         | 1 U        | 0.6 J     | 0.25 J     | 0.3 J [1 U]     | 1 U        | 1 U       | 1 U [1 U]       | 1 U [1 U]       | 1 U [1 U]       | 0.4 U [0.4 U] | 1 U [1 U]     | 1 U [1 U]     | 1 U [1 U]         | 1 U [1 U]       | 1 U        | 1 U       |
| Toluene                        | 600                       | 1 U        | 1 U       | 1 U        | 5 U [5 U]       | 2.4 J      | 0.8 J     | 5 U [5 U]       | 0.4 J [0.4 J]   | 5 U [5 U]       | 0.3 U [0.3 U] | 5 U [5 U]     | 5 U [5 U]     | 5 U [5 U]         | 1 U [1 U]       | 1.3        | 1 U       |
| 1,1,1-Trichloroethane          | 30                        | 1 U        | 1 U       | 1 U        | 5 U [5 U]       | 5 U        | 5 U       | 5 U [5 U]       | 5 U [5 U]       | 5 U [5 U]       | 0.4 U [0.4 U] | 5 U [5 U]     | 5 U [5 U]     | 5 U [5 U]         | 1 U [1 U]       | 1 U        | 1 U       |
| 1,1,2-Trichloroethane          | 3                         | 1 U        | 1 U       | 1 U        | 3 U [3 U]       | 3 U        | 3 U       | 3 U [3 U]       | 3 U [3 U]       | 3 U [3 U]       | 0.2 U [0.2 U] | 3 U [3 U]     | 3 U [3 U]     | 3 U [3 U]         | 1 U [1 U]       | 1 U        | 1 U       |
| Trichloroethene                | 1                         | 1 U        | 0.68 J    | 4.2        | 8 [8.1]         | 4.1        | 4.2       | 4.4 [4.1]       | 2.6 [2.4]       | 3 [2.9]         | 2.7 [2.8]     | 6.4 [5.8]     | 1.2 [1.2]     | 5.5 [5.6]         | 2.7 [2.4]       | 1.6        | 0.7 J     |
| Trichlorofluoromethane         | 2000                      | 1.1        | NA        | NA         | 5 U [5 U]       | 5 U        | 5 U       | 5 U [5 U]       | 5 U [5 U]       | 5 U [5 U]       | 0.4 U [0.4 U] | 5 U [5 U]     | 5 U [5 U]     | 5 U [5 U]         | 1 U [1 U]       | 1 U        | 1 U       |
| Vinyl chloride                 | 1                         | 1 U        | 1 U       | 1 U        | 5 U [5 U]       | 5 U        | 5 U       | 5 U [5 U]       | 5 U [5 U]       | 5 U [5 U]       | 0.2 U [0.2 U] | 5 U [5 U]     | 5 U [5 U]     | 5 U [5 U]         | 1 U [1 U]       | 1 U        | 1 U       |
| Xylene (total)                 | 1000                      | 3 U        | 3 U       | 3 U        | 5 U [5 U]       | 5 U        | 0.6 J     | 5 U [5 U]       | 5 U [5 U]       | 5 U [5 U]       | 0.4 U [0.4 U] | 5 U [5 U]     | 5 U [5 U]     | 5 U [5 U]         | 3 U [3 U]       | 3 U        | 3 U       |
| Total VOCs                     | -                         | 7.33 J     | 2.28 J    | 14.73 J    | 42.2 J [43.8 J] | 54.6 J     | 25.9 J    | 60.8 J [62.7 J] | 21.6 J [21.8 J] | 47.3 J [47.8 J] | 15.4 [15.8]   | 75 J [73.3 J] | 13.5 [13.8]   | 116.5 J [108.6 J] | 36.8 J [35.5 J] | 25.7 J     | 10.9 J    |

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds regulatory criteria

Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 23 of 26

| Sample ID                      | NJ CLASS IIA              | WCC-1M     | WCC-1M     | WCC-1M    | WCC-1M     | WCC-1S    | WCC-1S     | WCC-1S    | WCC-1S     | WCC-1S    | WCC-1S     | WCC-1S   | WCC-1S     | WCC-1S    | WCC-1S     | WCC-1S   | WCC-1S      | WCC-1S    |
|--------------------------------|---------------------------|------------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|----------|------------|-----------|------------|----------|-------------|-----------|
| Sample Date                    | GROUNDWATER QUALITY       | 12/16/2010 | 12/29/2011 | 7/11/2012 | 12/20/2012 | 6/29/2004 | 12/20/2004 | 6/28/2005 | 12/21/2005 | 6/21/2006 | 12/20/2006 | 7/6/2007 | 12/27/2007 | 6/24/2008 | 12/19/2008 | 7/2/2009 | 12/23/2009  | 6/30/2010 |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L       | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L     | ug/L       | ug/L      | ug/L       | ug/L     | ug/L        | ug/L      |
| (VOCs)                         |                           |            | - U        |           | <i></i>    |           | - J.       | - J.      |            | <i></i>   |            | <u> </u> | - J.       |           | <u> </u>   |          | <i></i>     | - 0.      |
| Acetone                        | 6000                      | NA         | NA         | 5 U       | 5 U        | NA        | NA         | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA       | NA          | NA        |
| Benzene                        | 1                         | 1 U        | 0.22 J     | 1 U       | 0.45 J     | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U [1 U]   | 1 U       |
| Bromodichloromethane           | 1                         | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.2 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U [1 U]   | 1 U       |
| Bromoform                      | 4                         | 1 U        | 1 U        | NA        | NA         | 4 U       | 4 U        | 4 U       | 4 U        | 4 U       | 4 U        | 0.2 U    | 4 U        | 4 U       | 4 U        | 1 U      | 1 U [1 U]   | 1 U       |
| Bromomethane                   | 10                        | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U [1 U]   | 1 U       |
| 2- Butanone                    | 300                       | NA         | NA         | 5 U       | 5 U        | NA        | NA         | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA       | NA          | NA        |
| Carbon Disulfide               | 700                       | NA         | NA         | 1 U       | 1 U        | NA        | NA         | NA        | NA         | NA        | NA         | NA       | NA         | NA        | NA         | NA       | NA          | NA        |
| Carbon tetrachloride           | 1                         | 1 U        | 1 U        | 1 U       | 1 U        | 2 U       | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        | 0.3 U    | 2 U        | 2 U       | 2 U        | 1 U      | 1 U [1 U]   | 1 U       |
| Chlorobenzene                  | 50                        | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U [1 U]   | 1 U       |
| Chloroethane                   | -                         | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U [1 U]   | 1 U       |
| 2-Chloroethyl vinyl ether      | -                         | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U [1 U]   | 1 U       |
| Chloroform                     | 70                        | 0.54 J     | 0.41 J     | 0.32 J    | 0.54 J     | 17        | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 1.2      | 5 U        | 5 U       | 5 U        | 1 U      | 1 U [1 U]   | 1 U       |
| Chloromethane                  | -                         | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U [1 U]   | 1 U       |
| Dibromochloromethane           | 1                         | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U [1 U]   | 1 U       |
| 1,1-Dichloroethane             | 50                        | 0.24 J     | 1 U        | 1 U       | 1 U        | 0.8 J     | 5 U        | 0.8 J     | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U [1 U]   | 1 U       |
| 1,2-Dichloroethane             | 2                         | 56         | 3.5        | 3.7       | 49         | 74        | 2 U        | 77        | 2 U        | 2 U       | 1.0 J      | 6.5      | 2 U        | 2 U       | 2 U        | 1 U      | 1 U [1 U]   | 0.51 J    |
| 1,1-Dichloroethene             | 1                         | 1 U        | 0.48 J     | 0.47 J    | 1 U        | 2 U       | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        | 0.5 U    | 2 U        | 2 U       | 2 U        | 1 U      | 1 U [1 U]   | 1 U       |
| cis-1,2-Dichloroethene         | 70                        | 9.0        | 1.4        | 1.5       | 11         | 26        | 5 U        | 17        | 5 U        | 5 U       | 5 U        | 1.6      | 5 U        | 5 U       | 5 U        | 1 U      | 1 U [1 U]   | 0.49 J    |
| trans-1,2-Dichloroethene       | 100                       | 1 U        | 1 U        | 1 U       | 1 U        | 0.8 J     | 5 U        | 0.7 J     | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U [1 U]   | 1 U       |
| 1,2-Dichloropropane            | 1                         | 1 U        | 1 U        | NA        | NA         | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.5 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U [1 U]   | 1 U       |
| cis-1,3-Dichloropropene        | -                         | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.1 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U [1 U]   | 1 U       |
| trans-1,3-Dichloropropene      | -                         | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U [1 U]   | 1 U       |
| Ethylbenzene                   | 700                       | 1 U        | 1 U        | 1 U       | 1 U        | 4 U       | 4 U        | 4 U       | 4 U        | 4 U       | 4 U        | 0.4 U    | 4 U        | 4 U       | 4 U        | 1 U      | 1 U [1 U]   | 1 U       |
| Methyl tert-butyl ether (MTBE) | 70                        | 1 U        | 1 U        | 1 U       | 1 U        | 0.6 J     | 5 U        | 0.9 J     | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U [1 U]   | 1 U       |
| Methylene chloride             | 3                         | 0.60 J     | 0.50 J     | 1 U       | 1 U        | 8.7       | 3 U        | 1.3 J     | 3 U        | 3 U       | 3 U        | 1.4      | 3 U        | 3 U       | 3 U        | 1 U      | 1 U [1 U]   | 1 U       |
| t-Butyl Alcohol (TBA)          | 100                       | 20 U       | 20 U       | NA        | NA         | 100 U     | 100 U      | 100 U     | 100 U      | 100 U     | 100 U      | 6.5 U    | 100 U      | 100 U     | 100 U      | 20 U     | 20 U [20 U] | 20 U      |
| 1,1,2,2-Tetrachloroethane      | 1                         | 0.30 J     | 0.19 J     | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U [1 U]   | 1 U       |
| Tetrachloroethene              | 1                         | 1 U        | 1 U        | 1 U       | 1 U        | 1.0       | 1 U        | 0.5 J     | 1 U        | 1 U       | 1 U        | 0.4 U    | 1 U        | 1 U       | 1 U        | 1 U      | 1 U [1 U]   | 1 U       |
| Toluene                        | 600                       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 0.5 J     | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U [1 U]   | 1 U       |
| 1,1,1-Trichloroethane          | 30                        | 1 U        | 1 U        | 1 U       | 1 U        | 0.9 J     | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U [1 U]   | 1 U       |
| 1,1,2-Trichloroethane          | 3                         | 1 U        | 1 U        | 1 U       | 1 U        | 3 U       | 3 U        | 3 U       | 3 U        | 3 U       | 3 U        | 0.2 U    | 3 U        | 3 U       | 3 U        | 1 U      | 1 U [1 U]   | 1 U       |
| Trichloroethene                | 1                         | 4.7        | 1 U        | 2.1       | 4.8        | 14        | 1 U        | 7.7       | 1 U        | 1 U       | 1 U        | 2.3      | 1 U        | 1 U       | 1 U        | 1 U      | 1 U [1 U]   | 0.82 J    |
| Trichlorofluoromethane         | 2000                      | 1 U        | 1.6        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U [1 U]   | 1 U       |
| Vinyl chloride                 | 1                         | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U        | 5 U       | 5 U        | 1 U      | 1 U [1 U]   | 1 U       |
| Xylene (total)                 | 1000                      | 3 U        | 3 U        | 3 U       | 3 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U        | 5 U       | 5 U        | 3 U      | 3 U [3 U]   | 3 U       |
| Total VOCs                     |                           | 71.4 J     | 8.3 J      | 8.09 J    | 65.79 J    | 144 J     | ND         | 106.4 J   | ND         | ND        | 1.0 J      | 13.0     | ND         | ND        | ND         | ND       | ND [ND]     | 1.82 J    |

### Notes:

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds regulatory criteria

Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 24 of 26

| Sample ID                      | NJ CLASS IIA              | WCC-1S     | WCC-1S     | WCC-1S    | WCC-1S     | WCC-3M    | WCC-3M     | WCC-3M    | WCC-3M     | WCC-3M    | WCC-3M     | WCC-3M   | WCC-3M    | WCC-3M    | WCC-3M     | WCC-3M   | WCC-3M     | WCC-3M    |
|--------------------------------|---------------------------|------------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|----------|-----------|-----------|------------|----------|------------|-----------|
| Sample Date                    | GROUNDWATER QUALITY       | 12/16/2010 | 12/29/2011 | 7/11/2012 | 12/20/2012 | 6/29/2004 | 12/20/2004 | 6/28/2005 | 12/21/2005 | 6/21/2006 | 12/20/2006 | 7/6/2007 | 1/22/2008 | 6/24/2008 | 12/19/2008 | 7/2/2009 | 12/23/2009 | 6/30/2010 |
| Unit                           | CRITERIA (7/22/2010) ug/L | ug/L       | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L     | ug/L      | ug/L      | ug/L       | ug/L     | ug/L       | ug/L      |
| (VOCs)                         |                           |            |            |           |            |           |            |           |            |           |            |          |           |           |            |          |            |           |
| Acetone                        | 6000                      | NA         | NA         | 5 U       | 5 U        | NA        | NA         | NA        | NA         | NA        | NA         | NA       | NA        | NA        | NA         | NA       | NA         | NA        |
| Benzene                        | 1                         | 1 U        | 1 U        | 0.13 J    | 0.17 J     | 0.5 J     | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.3      | 0.4 J     | 0.3 J     | 1 U        | 1 U      | 0.45 J     | 0.32 J    |
| Bromodichloromethane           | 1                         | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.2 U    | 1 U       | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       |
| Bromoform                      | 4                         | 1 U        | 1 U        | NA        | NA         | 4 U       | 4 U        | 4 U       | 4 U        | 4 U       | 4 U        | 0.2 U    | 4 U       | 4 U       | 4 U        | 1 U      | 1 U        | 1 U       |
| Bromomethane                   | 10                        | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       |
| 2- Butanone                    | 300                       | NA         | NA         | 5 U       | 5 U        | NA        | NA         | NA        | NA         | NA        | NA         | NA       | NA        | NA        | NA         | NA       | NA         | NA        |
| Carbon Disulfide               | 700                       | NA         | NA         | 1 U       | 1 U        | NA        | NA         | NA        | NA         | NA        | NA         | NA       | NA        | NA        | NA         | NA       | NA         | NA        |
| Carbon tetrachloride           | 1                         | 1 U        | 1 U        | 1 U       | 1 U        | 2 U       | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        | 0.3 U    | 2 U       | 2 U       | 2 U        | 1 U      | 1 U        | 1 U       |
| Chlorobenzene                  | 50                        | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       |
| Chloroethane                   | -                         | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       |
| 2-Chloroethyl vinyl ether      | -                         | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       |
| Chloroform                     | 70                        | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U       | 5 U       | 0.3 J      | 1 U      | 0.18 J     | 0.28 J    |
| Chloromethane                  | -                         | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       |
| Dibromochloromethane           | 1                         | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       |
| 1,1-Dichloroethane             | 50                        | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       |
| 1,2-Dichloroethane             | 2                         | 1 U        | 23         | 5.3       | 0.92 J     | 2 U       | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        | 0.3 U    | 2 U       | 2 U       | 2 U        | 1 U      | 1 U        | 1 U       |
| 1,1-Dichloroethene             | 1                         | 1 U        | 1 U        | 1 U       | 1 U        | 2 U       | 2 U        | 2 U       | 2 U        | 2 U       | 2 U        | 0.6      | 0.6 J     | 0.5 J     | 2 U        | 1 U      | 1 U        | 1 U       |
| cis-1,2-Dichloroethene         | 70                        | 1 U        | 7.9        | 3.3       | 0.41 J     | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.3 U    | 5 U       | 5 U       | 0.2 J      | 1 U      | 0.20 J     | 1 U       |
| trans-1,2-Dichloroethene       | 100                       | 1 U        | 0.22 J     | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       |
| 1,2-Dichloropropane            | 1                         | 1 U        | 1 U        | NA        | NA         | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.5 U    | 1 U       | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       |
| cis-1,3-Dichloropropene        | -                         | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.1 U    | 5 U       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       |
| trans-1,3-Dichloropropene      | -                         | 1 U        | 1 U        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       |
| Ethylbenzene                   | 700                       | 1 U        | 1 U        | 1 U       | 1 U        | 0.7 J     | 4 U        | 4 U       | 4 U        | 4 U       | 4 U        | 0.4 U    | 4 U       | 4 U       | 4 U        | 1 U      | 1 U        | 1 U       |
| Methyl tert-butyl ether (MTBE) | 70                        | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 1.4 J     | 0.6 J      | 0.6      | 1.8 J     | 0.8 J     | 0.3 J      | 1 U      | 0.74 J     | 0.70 J    |
| Methylene chloride             | 3                         | 1 U        | 1 U        | 1 U       | 1 U        | 3 U       | 3 U        | 3 U       | 3 U        | 3 U       | 3 U        | 0.4 U    | 3 U       | 3 U       | 3 U        | 1 U      | 1 U        | 1 U       |
| t-Butyl Alcohol (TBA)          | 100                       | 20 U       | 20 U       | NA        | NA         | 100 U     | 100 U      | 100 U     | 100 U      | 100 U     | 100 U      | 6.5 U    | 100 U     | 100 U     | 9.8 J      | 20 U     | 20 U       | 20 U      |
| 1,1,2,2-Tetrachloroethane      | 1                         | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 0.5 J      | 0.8      | 1.0       | 1.0 J     | 0.7 J      | 1.3      | 0.88 J     | 0.50 J    |
| Tetrachloroethene              | 1                         | 1 U        | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.4 U    | 1 U       | 1 U       | 1 U        | 1 U      | 1 U        | 1 U       |
| Toluene                        | 600                       | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 1.5 J      | 5 U       | 5 U        | 5 U       | 5 U        | 0.5      | 5 U       | 5 U       | 5 U        | 1 U      | 0.22 J     | 1 U       |
| 1,1,1-Trichloroethane          | 30                        | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       |
| 1,1,2-Trichloroethane          | 3                         | 1 U        | 1 U        | 1 U       | 1 U        | 3 U       | 3 U        | 3 U       | 3 U        | 3 U       | 3 U        | 0.2 U    | 3 U       | 3 U       | 3 U        | 1 U      | 1 U        | 1 U       |
| Trichloroethene                | 1                         | 1 U        | 1 U        | 1.7       | 0.52 J     | 1 U       | 1 U        | 1 U       | 1 U        | 1 U       | 1 U        | 0.4 U    | 1 U       | 1 U       | 1 U        | 1 U      | 0.34 J     | 0.26 J    |
| Trichlorofluoromethane         | 2000                      | 1 U        | 3.4        | NA        | NA         | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       |
| Vinyl chloride                 | 1                         | 1 U        | 1 U        | 1 U       | 1 U        | 5 U       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.2 U    | 5 U       | 5 U       | 5 U        | 1 U      | 1 U        | 1 U       |
| Xylene (total)                 | 1000                      | 3 U        | 3 U        | 3 U       | 3 U        | 5.7       | 5 U        | 5 U       | 5 U        | 5 U       | 5 U        | 0.4 U    | 5 U       | 5 U       | 5 U        | 3 U      | 0.44 J     | 3 U       |
| Total VOCs                     |                           | ND         | 35.5 J     | 10.43 J   | 2.02 J     | 6.9 J     | 1.5 J      | ND        | ND         | 1.4 J     | 1.1 J      | 2.8      | 3.8 J     | 2.6 J     | 11.3 J     | 1.3      | 3.5 J      | 2.06 J    |

### Notes:

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds regulatory criteria

Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 25 of 26

| Sample ID Sample Date          | NJ CLASS IIA<br>GROUNDWATER QUALITY | WCC-3M<br>12/16/2010 | WCC-3M<br>12/29/2011 | WCC-3M<br>7/11/2012 | WCC-3M<br>1/9/2013 | IW-3S<br>7/12/2012 | IW-4S<br>7/12/2012 | IW1-BT-2<br>7/10/2012 |
|--------------------------------|-------------------------------------|----------------------|----------------------|---------------------|--------------------|--------------------|--------------------|-----------------------|
| Unit                           | CRITERIA (7/22/2010) ug/L           | ug/L                 | ug/L                 | ug/L                | ug/L               | ug/L               | ug/L               | ug/L                  |
| (VOCs)                         |                                     |                      | -0/-                 | -87 -               |                    | 6/ -               | -6/ -              | 6/ -                  |
| Acetone                        | 6000                                | NA                   | NA                   | 5 U [5 U]           | 5 U                | 51                 | 5 U                | 5 U                   |
| Benzene                        | 1                                   | NA                   | NA                   | 0.3 J [0.25 J]      | 0.24 J             | 0.27 J             | 1 U                | 1 U                   |
| Bromodichloromethane           | 1                                   | NA                   | NA                   | 1 U [1 U]           | 1 U                | 1 U                | 1 U                | 1 U                   |
| Bromoform                      | 4                                   | NA                   | NA                   | NA                  | NA                 | NA                 | NA                 | NA                    |
| Bromomethane                   | 10                                  | NA                   | NA                   | NA                  | NA                 | NA                 | NA                 | NA                    |
| 2- Butanone                    | 300                                 | NA                   | NA                   | 1 U [1 U]           | 1 U                | 2.8 J              | 5 U                | 5 U                   |
| Carbon Disulfide               | 700                                 | NA                   | NA                   | 1 U [1 U]           | 1 U                | 0.77 J             | 1 U                | 1 U                   |
| Carbon tetrachloride           | 1                                   | NA                   | NA                   | 1 U [1 U]           | 1 U                | 1 U                | 1 U                | 1 U                   |
| Chlorobenzene                  | 50                                  | NA                   | NA                   | NA                  | NA                 | NA                 | NA                 | NA                    |
| Chloroethane                   | -                                   | NA                   | NA                   | 1 U [1 U]           | 1 U                | 1 U                | 1 U                | 1 U                   |
| 2-Chloroethyl vinyl ether      | -                                   | NA                   | NA                   | NA                  | NA                 | NA                 | NA                 | NA                    |
| Chloroform                     | 70                                  | NA                   | NA                   | 0.25 J [0.31 J]     | 0.38 J             | 1.5                | 0.26 J             | 1 U                   |
| Chloromethane                  | =                                   | NA                   | NA                   | NA                  | NA                 | NA                 | NA                 | NA                    |
| Dibromochloromethane           | 1                                   | NA                   | NA                   | 1 U [1 U]           | 1 U                | 1 U                | 1 U                | 1 U                   |
| 1,1-Dichloroethane             | 50                                  | NA                   | NA                   | 1 U [1 U]           | 1 U                | 1 U                | 1 U                | 1 U                   |
| 1,2-Dichloroethane             | 2                                   | NA                   | NA                   | 1 U [1 U]           | 1 U                | 140                | 1 U                | 1 U                   |
| 1,1-Dichloroethene             | 1                                   | NA                   | NA                   | 1 U [1 U]           | 1 U                | 1 U                | 1 U                | 1 U                   |
| cis-1,2-Dichloroethene         | 70                                  | NA                   | NA                   | 1 U [1 U]           | 1 U                | 0.61 J             | 0.37 J             | 38                    |
| trans-1,2-Dichloroethene       | 100                                 | NA                   | NA                   | 1 U [1 U]           | 1 U                | 1 U                | 1 U                | 0.69 J                |
| 1,2-Dichloropropane            | 1                                   | NA                   | NA                   | NA                  | NA                 | NA                 | NA                 | NA                    |
| cis-1,3-Dichloropropene        | -                                   | NA                   | NA                   | NA                  | NA                 | NA                 | NA                 | NA                    |
| trans-1,3-Dichloropropene      | =                                   | NA                   | NA                   | NA                  | NA                 | NA                 | NA                 | NA                    |
| Ethylbenzene                   | 700                                 | NA                   | NA                   | 1 U [1 U]           | 1 U                | 1 U                | 1 U                | 1 U                   |
| Methyl tert-butyl ether (MTBE) | 70                                  | NA                   | NA                   | 0.22 J [0.28 J]     | 1 U                | 1 U                | 1 U                | 1 U                   |
| Methylene chloride             | 3                                   | NA                   | NA                   | 1 U [1 U]           | 1 U                | 2.8                | 1 U                | 1 U                   |
| t-Butyl Alcohol (TBA)          | 100                                 | NA                   | NA                   | NA                  | NA                 | NA                 | NA                 | NA                    |
| 1,1,2,2-Tetrachloroethane      | 1                                   | NA                   | NA                   | 0.33 J [0.32 J]     | 1 U                | 1 U                | 1 U                | 1 U                   |
| Tetrachloroethene              | 1                                   | NA                   | NA                   | 1 U [1 U]           | 1 U                | 1.3                | 1 U                | 0.96 J                |
| Toluene                        | 600                                 | NA                   | NA                   | 1 U [1 U]           | 1 U                | 0.52 J             | 1 U                | 1 U                   |
| 1,1,1-Trichloroethane          | 30                                  | NA                   | NA                   | 1 U [1 U]           | 1 U                | 1 U                | 1 U                | 1 U                   |
| 1,1,2-Trichloroethane          | 3                                   | NA                   | NA                   | 1 U [1 U]           | 1 U                | 1 U                | 1 U                | 1 U                   |
| Trichloroethene                | 1                                   | NA                   | NA                   | 0.2 J [0.16 J]      | 0.29 J             | 6                  | 0.63 J             | 69                    |
| Trichlorofluoromethane         | 2000                                | NA                   | NA                   | NA NA               | NA                 | NA                 | NA                 | NA                    |
| Vinyl chloride                 | 1                                   | NA                   | NA                   | 1 U [1 U]           | 1 U                | 1.9                | 1 U                | 1 U                   |
| Xylene (total)                 | 1000                                | NA                   | NA                   | 3 U [3 U]           | 3 U                | 3 U                | 3 U                | 3 U                   |
| Total VOCs                     | -                                   | NA                   | NA                   | 1.30 J [1.32 J]     | 0.91 J             | 209.47 J           | 1.26 J             | 108.65 J              |

U Not Detected Above Detection Limits

-- Not Sampled

Bolded value indicates a detect above detection limits Red bolded value indicates a detection that exceeds regulatory criteria

Historic groundwater data are obtained from the 2012 Annual Groundwater Report (Arcadis, 2012)

Page 26 of 26

Attachment 2

2014 Baseline/PostInjection Event #1
Groundwater Analytical
Results

| Volatile Organic Compounds (\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample ID Lab Sample ID Sample Date CRITERIA (7/22/2010) | EB<br>JB57365-9        | EB - FILTERED<br>JB57365-9F | EB<br>JB57365-19       | EB - FILTERED | ТВ                     | EB                                            | ТВ                     | EB                     | EB - FILTERED | ТВ                     | ТВ                     | ISCO-MW-1              | ISCO-MW-1     | ISCO-MW-2                                     | ISCO-MW-2                                     | ISCO-MW-3              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------|-----------------------------|------------------------|---------------|------------------------|-----------------------------------------------|------------------------|------------------------|---------------|------------------------|------------------------|------------------------|---------------|-----------------------------------------------|-----------------------------------------------|------------------------|
| Volatile Organic Compounds (\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample Date GROUNDWATER QUALITY  CRITERIA (7/22/2010)    |                        | JB57365-9F                  | IDE73CE 10             |               |                        |                                               |                        |                        |               |                        |                        | 1300-111111-1          | 13CO-IVIVV-1  |                                               |                                               | I3CO-IVIVV-3           |
| Volatile Organic Compounds (\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample Date CRITERIA (7/22/2010)                         |                        |                             | 102/302-13             | JB57365-19F   | JB57365-21             | JB57510-11                                    | JB57510-12             | JB59106-2              | JB59106-2F    | JB59106-4              | JB57131-4              | JB57365-1              | JB57365-1F    | JB57365-7                                     | JB57365-7F                                    | JB57365-10             |
| Volatile Organic Compounds (\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          | 1/9/2014               | 1/9/2014                    | 1/10/2014              | 1/10/2014     | 1/10/2014              | 1/13/2014                                     | 1/13/2014              | 2/3/2014               | 2/3/2014      | 2/3/2014               | 1/6/2014               | 1/9/2014               | 1/9/2014      | 1/10/2014                                     | 1/10/2014                                     | 1/9/2014               |
| Volatile Organic Compounds (\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Matrix ug/L                                              | WATER                  | WATER                       | WATER                  | WATER         | WATER                  | WATER                                         | WATER                  | WATER                  | WATER         | WATER                  | WATER                  | GW                     | GW - FILTERED | GW                                            | GW - FILTERED                                 | GW                     |
| voiatile Organic Compounds (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unit<br>VOCs)                                            | ug/L                   | ug/L                        | ug/L                   | ug/L          | ug/L                   | ug/L                                          | ug/L                   | ug/L                   | ug/L          | ug/L                   | ug/L                   | ug/L                   | ug/L          | ug/L                                          | ug/L                                          | ug/L                   |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6000                                                     | ND (3.3)               | <u>-</u>                    | ND (3.3)               | _             | ND (3.3)               | ND (3.3)                                      | ND (3.3)               | ND (3.3)               |               | ND (3.3)               | ND (3.3)               | ND (3.3)               |               | 102                                           |                                               | ND (3.3)               |
| Acetone<br>Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                        | ND (0.28)              | -                           | ND (0.28)              | -             | ND (3.3)<br>ND (0.28)  | ND (3.3)<br>ND (0.28)                         | ND (3.3)<br>ND (0.28)  | ND (3.3)<br>ND (0.28)  | -             | ND (3.3)<br>ND (0.28)  | ND (3.3)<br>ND (0.28)  | 0.83 J                 | -             | ND (0.28)                                     | -                                             | ND (3.3)<br>ND (0.28)  |
| Bromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          | ND (0.42)              | -                           | ND (0.42)              | -             | ND (0.42)              | ND (0.42)                                     | ND (0.42)              | ND (0.42)              | -             | ND (0.42)              | ND (0.42)              | ND (0.42)              | -             | ND (0.42)                                     | -                                             | ND (0.42)              |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                        | ND (0.21)              | -                           | ND (0.21)              | -             | ND (0.21)              | ND (0.21)                                     | ND (0.21)              | ND (0.21)              | -             | ND (0.21)              | ND (0.21)              | ND (0.21)              | -             | ND (0.21)                                     | -                                             | ND (0.21)              |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                        | ND (0.30)              | -                           | ND (0.30)              | -             | ND (0.30)              | ND (0.30)                                     | ND (0.30)              | ND (0.30)              | -             | ND (0.30)              | ND (0.30)              | ND (0.30)              | -             | ND (0.30)                                     | -                                             | ND (0.30)              |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                       | ND (0.56)              | -                           | ND (0.56)              | -             | ND (0.56)              | ND (0.56)                                     | ND (0.56)              | ND (0.56)              | -             | ND (0.56)              | ND (0.56)              | ND (0.56)              | -             | ND (0.56)                                     | -                                             | ND (0.56)              |
| 2-Butanone (MEK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 300                                                      | ND (3.2)               | -                           | ND (3.2)               | -             | ND (3.2)               | ND (3.2)                                      | ND (3.2)               | ND (3.2)               | -             | ND (3.2)               | ND (3.2)               | ND (3.2)               | -             | 173                                           | -                                             | ND (3.2)               |
| Carbon disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 700                                                      | ND (0.18)              | -                           | ND (0.18)              | -             | ND (0.18)              | ND (0.18)                                     | ND (0.18)              | ND (0.18)              | -             | ND (0.18)              | ND (0.18)              | ND (0.18)              | =             | 0.79                                          | J -                                           | ND (0.18)              |
| Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                        | ND (0.23)              | -                           | ND (0.23)              | -             | ND (0.23)              | ND (0.23)                                     | ND (0.23)              | ND (0.23)              | -             | ND (0.23)              | ND (0.23)              | ND (0.23)              | -             | ND (0.23)                                     | -                                             | ND (0.23)              |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50                                                       | ND (0.35)              | -                           | ND (0.35)              | -             | ND (0.35)              | ND (0.35)                                     | ND (0.35)              | ND (0.35)              | -             | ND (0.35)              | ND (0.35)              | ND (0.35)              | -             | ND (0.35)                                     | -                                             | ND (0.35)              |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70                                                       | ND (0.39)<br>ND (0.25) | -                           | ND (0.39)<br>ND (0.25) | -             | ND (0.39)<br>ND (0.25) | ND (0.39)<br>ND (0.25)                        | ND (0.39)<br>ND (0.25) | ND (0.39)<br>ND (0.25) | -             | ND (0.39)<br>ND (0.25) | ND (0.39)<br>ND (0.25) | ND (0.39)<br>ND (0.25) | -             | ND (0.39)<br>1.7                              | -                                             | ND (0.39)<br>ND (0.25) |
| Chloroform<br>Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70                                                       | ND (0.36)              | -                           | ND (0.36)              | -             | ND (0.25)              | ND (0.25)                                     | ND (0.36)              | ND (0.25)              | -             | ND (0.25)              | ND (0.25)              | ND (0.25)              | -             | ND (0.36)                                     | -                                             | ND (0.36)              |
| Cyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          | ND (0.36)              | -                           | ND (0.18)              | _             | ND (0.38)              | ND (0.38)                                     | ND (0.18)              | ND (0.38)              | -             | ND (0.38)              | ND (0.38)              | 0.31 J                 | _             | ND (0.38)                                     | -                                             | ND (0.18)              |
| 1,2-Dibromo-3-chloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.02                                                     | ND (1.3)               | -                           | ND (1.3)               | -             | ND (1.3)               | ND (1.3)                                      | ND (1.3)               | ND (1.3)               | -             | ND (1.3)               | ND (1.3)               | ND (1.3)               | -             | ND (1.3)                                      | -                                             | ND (1.3)               |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                        | ND (0.19)              | -                           | ND (0.19)              | -             | ND (0.19)              | ND (0.19)                                     | ND (0.19)              | ND (0.19)              | -             | ND (0.19)              | ND (0.19)              | ND (0.19)              | -             | ND (0.19)                                     | -                                             | ND (0.19)              |
| 1,2-Dibromoethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03                                                     | ND (0.16)              | -                           | ND (0.16)              | <u>-</u>      | ND (0.16)              | ND (0.16)                                     | ND (0.16)              | ND (0.16)              | <u>-</u>      | ND (0.16)              | ND (0.16)              | ND (0.16)              | -             | ND (0.16)                                     | -                                             | ND (0.16)              |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 600                                                      | ND (0.20)              | -                           | ND (0.20)              | -             | ND (0.20)              | ND (0.20)                                     | ND (0.20)              | ND (0.20)              | -             | ND (0.20)              | ND (0.20)              | ND (0.20)              | -             | ND (0.20)                                     | -                                             | ND (0.20)              |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 600                                                      | ND (0.31)              | -                           | ND (0.31)              | -             | ND (0.31)              | ND (0.31)                                     | ND (0.31)              | ND (0.31)              | -             | ND (0.31)              | ND (0.31)              | ND (0.31)              | -             | ND (0.31)                                     | -                                             | ND (0.31)              |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75                                                       | ND (0.30)              | -                           | ND (0.30)              | -             | ND (0.30)              | ND (0.30)                                     | ND (0.30)              | ND (0.30)              | -             | ND (0.30)              | ND (0.30)              | ND (0.30)              | -             | ND (0.30)                                     | -                                             | ND (0.30)              |
| Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1000                                                     | ND (0.63)              | -                           | ND (0.63)              | -             | ND (0.63)              | ND (0.63)                                     | ND (0.63)              | ND (0.63)              | -             | ND (0.63)              | ND (0.63)              | ND (0.63)              | -             | ND (0.63)                                     | -                                             | ND (0.63)              |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50                                                       | ND (0.26)              | -                           | ND (0.26)<br>ND (0.22) | -             | ND (0.26)<br>ND (0.22) | ND (0.26)<br>ND (0.22)                        | ND (0.26)              | ND (0.26)<br>ND (0.22) | -             | ND (0.26)<br>ND (0.22) | ND (0.26)              | 0.46 J<br>21.4         | -             | ND (0.26)                                     | -                                             | ND (0.26)              |
| 1,2-Dichloroethane<br>1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                        | ND (0.22)<br>ND (0.34) | 1 -                         | ND (0.34)              | -             | ND (0.22)              | ND (0.22)                                     | ND (0.22)<br>ND (0.34) | ND (0.22)              | -             | ND (0.22)              | ND (0.22)<br>ND (0.34) | ND (0.34)              | -             | 1270<br>ND (0.34)                             | -                                             | 0.48 J<br>ND (0.34)    |
| cis-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70                                                       | ND (0.24)              | <u> </u>                    | ND (0.24)              | -             | ND (0.24)              | ND (0.24)                                     | ND (0.24)              | ND (0.24)              | -             | ND (0.24)              | ND (0.24)              | 3.2                    | -             | 1.8                                           | <u> </u>                                      | 47.1                   |
| trans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                                                      | ND (0.38)              | -                           | ND (0.38)              | -             | ND (0.38)              | ND (0.38)                                     | ND (0.38)              | ND (0.38)              | -             | ND (0.38)              | ND (0.38)              | ND (0.38)              | -             | 3                                             | -                                             | ND (0.38)              |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                        | ND (0.28)              | -                           | ND (0.28)              | -             | ND (0.28)              | ND (0.28)                                     | ND (0.28)              | ND (0.28)              | -             | ND (0.28)              | ND (0.28)              | ND (0.28)              | -             | ND (0.28)                                     | -                                             | ND (0.28)              |
| cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                        | ND (0.15)              | -                           | ND (0.15)              | -             | ND (0.15)              | ND (0.15)                                     | ND (0.15)              | ND (0.15)              | -             | ND (0.15)              | ND (0.15)              | ND (0.15)              | -             | ND (0.15)                                     | -                                             | ND (0.15)              |
| trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =                                                        | ND (0.21)              | -                           | ND (0.21)              | -             | ND (0.21)              | ND (0.21)                                     | ND (0.21)              | ND (0.21)              | -             | ND (0.21)              | ND (0.21)              | ND (0.21)              | -             | ND (0.21)                                     | -                                             | ND (0.21)              |
| 1,4-Dioxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                        | ND (73)                | -                           | ND (73)                | -             | ND (73)                | ND (73)                                       | ND (73)                | ND (73)                | -             | ND (73)                | ND (73)                | ND (73)                | -             | ND (73)                                       | -                                             | ND (73)                |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 700                                                      | ND (0.21)              | -                           | ND (0.21)              | -             | ND (0.21)              | ND (0.21)                                     | ND (0.21)              | ND (0.21)              | -             | ND (0.21)              | ND (0.21)              | ND (0.21)              | -             | ND (0.21)                                     | -                                             | ND (0.21)              |
| Freon 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =                                                        | ND (0.77)              | -                           | ND (0.77)              | -             | ND (0.77)              | ND (0.77)                                     | ND (0.77)              | ND (0.77)              | -             | ND (0.77)              | ND (0.77)              | ND (0.77)              | -             | ND (0.77)                                     | -                                             | ND (0.77)              |
| 2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          | ND (1.7)               | -                           | ND (1.7)               | -             | ND (1.7)               | ND (1.7)                                      | ND (1.7)               | ND (1.7)               | -             | ND (1.7)               | ND (1.7)               | ND (1.7)               | -             | ND (1.7)                                      | -                                             | ND (1.7)               |
| Isopropylbenzene<br>Methyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 700<br>7000                                              | ND (0.22)<br>ND (1.5)  | -                           | ND (0.22)<br>ND (1.5)  | -             | ND (0.22)<br>ND (1.5)  | ND (0.22)<br>ND (1.5)                         | ND (0.22)<br>ND (1.5)  | ND (0.22)<br>ND (1.5)  | -             | ND (0.22)<br>ND (1.5)  | ND (0.22)<br>ND (1.5)  | 2.4<br>ND (1.5)        | -             | ND (0.22)<br>ND (1.5)                         | -                                             | ND (0.22)<br>ND (1.5)  |
| Methylcyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                        | ND (0.15)              | -                           | ND (0.15)              | _             | ND (0.15)              | ND (0.15)                                     | ND (0.15)              | ND (0.15)              | _             | ND (0.15)              | ND (0.15)              | ND (0.15)              | -             | ND (0.15)                                     | -                                             | ND (0.15)              |
| Methyl Tert Butyl Ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70                                                       | ND (0.29)              | -                           | ND (0.29)              | -             | ND (0.29)              | ND (0.29)                                     | ND (0.29)              | ND (0.29)              | -             | ND (0.29)              | ND (0.29)              | ND (0.29)              | -             | ND (0.29)                                     | -                                             | ND (0.29)              |
| 4-Methyl-2-pentanone(MIBK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                        | ND (1.5)               | -                           | ND (1.5)               | -             | ND (1.5)               | ND (1.5)                                      | ND (1.5)               | ND (1.5)               | -             | ND (1.5)               | ND (1.5)               | ND (1.5)               | -             | ND (1.5)                                      | -                                             | ND (1.5)               |
| Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                        | ND (0.86)              | -                           | ND (0.86)              | -             | ND (0.86)              | ND (0.86)                                     | ND (0.86)              | ND (0.86)              | -             | ND (0.86)              | ND (0.86)              | ND (0.86)              | -             | 4.5                                           | -                                             | ND (0.86)              |
| Styrene<br>1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                                      | ND (0.30)<br>ND (0.20) | -                           | ND (0.30)<br>ND (0.20) | -             | ND (0.30)<br>ND (0.20) | ND (0.30)<br>ND (0.20)                        | ND (0.30)<br>ND (0.20) | ND (0.30)<br>ND (0.20) | -             | ND (0.30)<br>ND (0.20) | ND (0.30)<br>ND (0.20) | ND (0.30)<br>ND (0.20) | -             | ND (0.30)<br>22.5                             | -                                             | ND (0.30)<br>ND (0.20) |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                        | ND (0.25)              | -                           | ND (0.25)              | -             | ND (0.25)              | ND (0.25)                                     | ND (0.25)              | ND (0.25)              | -             | ND (0.25)              | ND (0.25)              | ND (0.25)              | -             | 5                                             | -                                             | 1.4                    |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 600                                                      | ND (0.44)              | -                           | ND (0.44)              | -             | ND (0.44)              | ND (0.44)                                     | ND (0.44)              | ND (0.44)              | -             | ND (0.44)              | ND (0.44)              | ND (0.44)              | -             | 1.7                                           | -                                             | ND (0.44)              |
| 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                        | ND (0.24)              | -                           | ND (0.24)              | -             | ND (0.24)              | ND (0.24)                                     | ND (0.24)              | ND (0.24)              | -             | ND (0.24)              | ND (0.24)              | ND (0.24)              | -             | ND (0.24)                                     | -                                             | ND (0.24)              |
| 1,2,4-Trichlorobenzene<br>1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 30                                                     | ND (0.22)<br>ND (0.25) | -                           | ND (0.22)<br>ND (0.25) | -             | ND (0.22)<br>ND (0.25) | ND (0.22)<br>ND (0.25)                        | ND (0.22)<br>ND (0.25) | ND (0.22)<br>ND (0.25) | -             | ND (0.22)<br>ND (0.25) | ND (0.22)<br>ND (0.25) | ND (0.22)<br>0.46 J    | -             | ND (0.22)<br>ND (0.25)                        | +                                             | ND (0.22)<br>ND (0.25) |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                        | ND (0.23)              | -                           | ND (0.23)              | -             | ND (0.23)              | ND (0.23)                                     | ND (0.23)              | ND (0.23)              | -             | ND (0.21)              | ND (0.21)              | ND (0.21)              | -             | 0.49                                          | J -                                           | ND (0.23)              |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                        | ND (0.50)              | -                           | ND (0.50)              |               | ND (0.50)              | ND (0.50)                                     | ND (0.50)              | ND (0.50)              | -             | ND (0.50)              | ND (0.50)              | 23.1                   | <u>-</u>      | 1.6                                           | -                                             | 54.9                   |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2000                                                     | ND (0.33)              | -                           | ND (0.33)              | -             | ND (0.33)              | ND (0.33)                                     | ND (0.33)              | ND (0.33)              | -             | ND (0.33)              | ND (0.33)              | ND (0.33)              | -             | ND (0.33)                                     | -                                             | ND (0.33)              |
| Vinyl chloride<br>m,p-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                        | ND (0.41)<br>ND (0.40) | -                           | ND (0.41)<br>ND (0.40) | -             | ND (0.41)<br>ND (0.40) | ND (0.41)<br>ND (0.40)                        | ND (0.41)<br>ND (0.40) | ND (0.41)<br>ND (0.40) | -             | ND (0.41)<br>ND (0.40) | ND (0.41)<br>ND (0.40) | ND (0.41)<br>ND (0.40) | -             | ND (0.41)<br>0.43                             | -                                             | ND (0.41)<br>ND (0.40) |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                        | ND (0.40)              | -                           | ND (0.40)              | -             | ND (0.40)<br>ND (0.19) | ND (0.40)<br>ND (0.19)                        | ND (0.40)              | ND (0.40)              | -             | ND (0.40)              | ND (0.40)              | ND (0.40)<br>ND (0.19) | -             | 0.43                                          | <u>,                                     </u> | ND (0.40)<br>ND (0.19) |
| Xylene (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1000                                                     | ND (0.19)              | -                           | ND (0.19)              |               | ND (0.19)              | ND (0.19)                                     | ND (0.19)              | ND (0.19)              | <u>-</u>      | ND (0.19)              | ND (0.19)              | ND (0.19)              | <u>-</u>      | 0.67                                          | J -                                           | ND (0.19)              |
| Total VOCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                        | 0                      |                             | 0                      |               | 0                      | 0                                             | 0                      | 0                      |               | 0                      | 0                      | 52.16                  |               | 1588.75                                       |                                               | 103.88                 |
| CC/MC V-I-Ail-TIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |                        |                             |                        |               |                        |                                               |                        |                        |               |                        |                        |                        |               |                                               |                                               |                        |
| GC/MS Volatile TIC<br>Total TIC, Volatile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,                                                        | 0 1                    |                             | 1 0 1 1                |               | 1 0 1                  | 1 0 1                                         | 1 0 1                  | 1 0 1                  | 1             | 1 0 1                  | 1 0 1                  | 1 0 1                  | 1 - 1         | 1 72                                          |                                               |                        |
| Total TIC, Volatile<br>Total Alkanes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          | 0                      | -                           | 0                      | -             | 0                      | 0                                             | 0                      | 0                      | -             | 0                      | 0                      | 0                      | -             | 7.2                                           | J -                                           | 0                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | -                      | ı L                         |                        |               |                        | <u>, , , , , , , , , , , , , , , , , , , </u> | , , , ,                |                        | 1             | ,                      | <u> </u>               | <u>, - 1</u>           | 1             | <u>, , , , , , , , , , , , , , , , , , , </u> | 1                                             |                        |
| Metals Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                        |                             |                        |               |                        |                                               |                        |                        |               |                        |                        |                        |               |                                               |                                               | الترسير                |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70                                                       | <10                    | <10                         | <10                    | <10           | <u> </u>               | - 1                                           | - 1                    | <10                    | <10           | - 1                    | - 1                    | <10                    | <10           | 208                                           |                                               | <10                    |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300                                                      | -<br><10000            | <100                        | -<br><10000            | <100          | -                      | -                                             | -                      | -<br><10000            | <100          | -                      | -                      | 18300                  | 5670          | 22300                                         | 22200                                         | 18000                  |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50000                                                    | <10000                 | -                           | <10000                 | -             | -                      | -                                             | -                      | <10000                 | -             | -                      | -                      | 18300                  | -             | 22300                                         | =                                             | 18000                  |
| General Chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |                        |                             |                        |               |                        |                                               |                        |                        |               |                        |                        |                        |               |                                               |                                               |                        |
| A STATE OF THE PARTY OF THE PAR | 500000                                                   | <10000                 | - 1                         | <10000                 | - 1           | - 1                    | ] - 1                                         | - 1                    | <10000                 | - 1           | - 1                    |                        | 206000                 | -             | 433000                                        | - 1                                           | 580000                 |
| Solids, Total Dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          | <10000                 |                             | <10000                 |               |                        | 1                                             |                        | <10000                 |               | -t                     |                        | 101000                 | -             |                                               |                                               | 241000                 |

|                                               | Sample ID                       | ISCO-MW-3     | ISCO-MW-3-DUP          | ISCO-MW-3-DUP | ISCO-MW-4              | ISCO-MW-4     | ISCO-MW-5              | ISCO-MW-5                                      | ISCO-MW-6                  | ISCO-MW-6     | ISCO-MW-7                | ISCO-MW-7                                        | ISCO-MW-8              | ISCO-MW-8                                        | ISCO-MW-9              | ISCO-MW-9                                        | IW1-BT-2               |
|-----------------------------------------------|---------------------------------|---------------|------------------------|---------------|------------------------|---------------|------------------------|------------------------------------------------|----------------------------|---------------|--------------------------|--------------------------------------------------|------------------------|--------------------------------------------------|------------------------|--------------------------------------------------|------------------------|
|                                               | Lab Sample ID                   | JB57365-10F   | JB57365-11             | JB57365-11F   | JB59106-1              | JB59106-1F    | JB57365-3              | JB57365-3F                                     | JB57365-4                  | JB57365-4F    | JB57365-18               | JB57365-18F                                      | JB57365-5              | JB57365-5F                                       | JB57365-20             | JB57365-20F                                      | JB57365-8              |
|                                               | Sample Date GROUNDWATER QUALITY | 1/9/2014      | 1/9/2014               | 1/9/2014      | 2/3/2014               | 2/3/2014      | 1/9/2014               | 1/9/2014                                       | 1/9/2014                   | 1/9/2014      | 1/10/2014                | 1/10/2014                                        | 1/9/2014               | 1/9/2014                                         | 1/10/2014              | 1/10/2014                                        | 1/9/2014               |
|                                               | Matrix (7/22/2010)              | GW - FILTERED | GW                     | GW - FILTERED | GW                     | GW - FILTERED | GW                     | GW - FILTERED                                  | GW                         | GW - FILTERED | GW                       | GW - FILTERED                                    | GW                     | GW - FILTERED                                    | GW                     | GW - FILTERED                                    | GW                     |
|                                               | ug/L<br>Unit                    | ug/L          | ug/L                   | ug/L          | ug/L                   | ug/L          | ug/L                   | ug/L                                           | ug/L                       | ug/L          | ug/L                     | ug/L                                             | ug/L                   | ug/L                                             | ug/L                   | ug/L                                             | ug/L                   |
| Volatile Organic Compounds (                  | (VOCs)                          |               |                        |               |                        |               |                        |                                                |                            |               |                          |                                                  |                        |                                                  |                        |                                                  |                        |
| Acetone                                       | 6000                            | -             | ND (3.3)               | -             | ND (3.3)               | -             | ND (3.3)               | -                                              | ND (3.3)                   | -             | ND (3.3)                 | -                                                | 30                     | -                                                | ND (3.3)               | -                                                | ND (3.3)               |
| Benzene                                       | 1                               | -             | ND (0.28)              | -             | ND (0.28)              | -             | 0.69 J                 | -                                              | ND (0.28)                  | -             | ND (0.28)                | - +                                              | ND (0.28)              | -                                                | ND (0.28)              | -                                                | ND (0.28)              |
| Bromochloromethane<br>Bromodichloromethane    | - 1                             | -             | ND (0.42)<br>ND (0.21) | -             | ND (0.42)<br>ND (0.21) | -             | ND (0.42)<br>ND (0.21) | -                                              | ND (0.42)<br>ND (0.21)     | -             | ND (0.42)<br>ND (0.21)   | -                                                | ND (0.42)<br>ND (0.21) | -                                                | ND (0.42)<br>ND (0.21) | -                                                | ND (0.42)<br>ND (0.21) |
| Bromoform                                     | 4                               | -             | ND (0.21)              | -             | ND (0.21)<br>ND (0.30) | -             | ND (0.30)              | -                                              | ND (0.21)                  | -             | ND (0.21)                | -                                                | ND (0.21)              | -                                                | ND (0.21)              | -                                                | ND (0.21)              |
| Bromomethane                                  | 10                              | -             | ND (0.56)              | -             | ND (0.56)              | -             | ND (0.56)              | -                                              | ND (0.56)                  | -             | ND (0.56)                | -                                                | ND (0.56)              | -                                                | ND (0.56)              | -                                                | ND (0.56)              |
| 2-Butanone (MEK)                              | 300                             | -             | ND (3.2)               | -             | ND (3.2)               | -             | ND (3.2)               | -                                              | ND (3.2)                   | -             | ND (3.2)                 | -                                                | ND (3.2)               | -                                                | ND (3.2)               | -                                                | ND (3.2)               |
| Carbon disulfide                              | 700                             | -             | ND (0.18)              | -             | ND (0.18)              | -             | ND (0.18)              | -                                              | ND (0.18)                  | -             | ND (0.18)                | -                                                | ND (0.18)              | -                                                | ND (0.18)              | -                                                | ND (0.18)              |
| Carbon tetrachloride                          | 1                               | -             | ND (0.23)              | -             | ND (0.23)              | -             | ND (0.23)              | -                                              | ND (0.23)                  | -             | 0.8                      | J -                                              | 0.65                   | J -                                              | ND (0.23)              | -                                                | ND (0.23)              |
| Chlorobenzene                                 | 50                              | -             | ND (0.35)              | -             | ND (0.35)              | -             | ND (0.35)              | -                                              | ND (0.35)                  | -             | ND (0.35)                | -                                                | ND (0.35)              | -                                                | ND (0.35)              | -                                                | ND (0.35)              |
| Chloroethane                                  | -                               | -             | ND (0.39)              | -             | ND (0.39)              | -             | ND (0.39)              | -                                              | ND (0.39)                  | -             | ND (0.39)                | -                                                | ND (0.39)              |                                                  | ND (0.39)              | -                                                | ND (0.39)              |
| Chloroform                                    | 70                              | -             | ND (0.25)              | -             | 0.36                   | J -           | ND (0.25)              | -                                              | ND (0.25)                  | -             | 1.4                      | -                                                | 1.7                    | -                                                | ND (0.25)              | -                                                | 1.3                    |
| Chloromethane<br>Cyclohexane                  | -                               | <del>-</del>  | ND (0.36)<br>ND (0.18) | + -           | ND (0.36)<br>ND (0.18) | -             | ND (0.36)<br>ND (0.18) | -                                              | ND (0.36)<br>ND (0.18)     | -             | ND (0.36)<br>ND (0.18)   | -                                                | ND (0.36)<br>ND (0.18) | -                                                | ND (0.36)<br>ND (0.18) | -                                                | ND (0.36)<br>ND (0.18) |
| 1,2-Dibromo-3-chloropropane                   | 0.02                            | -             | ND (0.18)              | -             | ND (0.18)              | -             | ND (0.18)              | -                                              | ND (0.18)                  | -             | ND (0.18)                | <del>                                     </del> | ND (0.18)              | -                                                | ND (0.18)              | -                                                | ND (0.18)              |
| Dibromochloromethane                          | 1                               | -             | ND (0.19)              | -             | ND (0.19)              | -             | ND (0.19)              | -                                              | ND (0.19)                  | -             | ND (0.19)                |                                                  | ND (0.19)              | -                                                | ND (0.19)              | -                                                | ND (0.19)              |
| 1,2-Dibromoethane                             | 0.03                            | -             | ND (0.16)              |               | ND (0.16)              | - 1           | ND (0.16)              | -                                              | ND (0.16)                  | -             | ND (0.16)                | - 1                                              | ND (0.16)              |                                                  | ND (0.16)              | -                                                | ND (0.16)              |
| 1,2-Dichlorobenzene                           | 600                             | -             | ND (0.20)              | <u> </u>      | ND (0.20)              | <u>-</u>      | ND (0.20)              | <u>-                                      </u> | ND (0.20)                  | =             | ND (0.20)                | -                                                | ND (0.20)              | -                                                | ND (0.20)              | -                                                | ND (0.20)              |
| 1,3-Dichlorobenzene                           | 600                             | -             | ND (0.31)              | -             | ND (0.31)              | -             | ND (0.31)              | -                                              | ND (0.31)                  | -             | ND (0.31)                | -                                                | ND (0.31)              | -                                                | ND (0.31)              | -                                                | ND (0.31)              |
| 1,4-Dichlorobenzene                           | 75                              | -             | ND (0.30)              | -             | ND (0.30)              | -             | ND (0.30)              | =                                              | ND (0.30)                  | ÷             | ND (0.30)                | -                                                | ND (0.30)              | -                                                | ND (0.30)              | -                                                | ND (0.30)              |
| Dichlorodifluoromethane                       | 1000                            | -             | ND (0.63)              | -             | ND (0.63)              | -             | ND (0.63)              | -                                              | ND (0.63)                  | -             | ND (0.63)                | -                                                | ND (0.63)              | -                                                | ND (0.63)              | -                                                | ND (0.63)              |
| 1,1-Dichloroethane 1,2-Dichloroethane         | 50<br>2                         | -             | ND (0.26)<br>0.5       | +             | ND (0.26)<br>0.98      | .1 -          | ND (0.26)<br>46.7      | -                                              | ND (0.26)<br><b>0.56</b> J | -             | ND (0.26)<br>1.1         | -                                                | ND (0.26)<br>36.8      | -                                                | ND (0.26)<br>ND (0.22) | -                                                | ND (0.26)<br>ND (0.22) |
| 1,1-Dichloroethane                            | 1                               | -             | ND (0.34)              |               | ND (0.34)              | J -           | ND (0.34)              | -                                              | ND (0.34)                  | -             | ND (0.34)                | 1 -                                              | ND (0.34)              | -                                                | ND (0.22)              | -                                                | ND (0.22)              |
| cis-1,2-Dichloroethene                        | 70                              | -             | 56.8                   | -             | ND (0.24)              | -             | 9.2                    | -                                              | 1.4                        | -             | ND (0.24)                | -                                                | 0.58                   | J -                                              | 2.6                    | -                                                | ND (0.24)              |
| trans-1,2-Dichloroethene                      | 100                             | -             | ND (0.38)              | -             | ND (0.38)              | -             | ND (0.38)              | -                                              | ND (0.38)                  | -             | ND (0.38)                | -                                                | ND (0.38)              | -                                                | ND (0.38)              | -                                                | ND (0.38)              |
| 1,2-Dichloropropane                           | 1                               | -             | ND (0.28)              | -             | ND (0.28)              | -             | ND (0.28)              | -                                              | ND (0.28)                  | -             | ND (0.28)                | -                                                | ND (0.28)              | -                                                | ND (0.28)              | -                                                | ND (0.28)              |
| cis-1,3-Dichloropropene                       | -                               | -             | ND (0.15)              | -             | ND (0.15)              | -             | ND (0.15)              | -                                              | ND (0.15)                  | -             | ND (0.15)                | -                                                | ND (0.15)              | -                                                | ND (0.15)              | -                                                | ND (0.15)              |
| trans-1,3-Dichloropropene                     | -                               | =             | ND (0.21)              | -             | ND (0.21)              | -             | ND (0.21)              | =                                              | ND (0.21)                  | =             | ND (0.21)                | -                                                | ND (0.21)              | -                                                | ND (0.21)              | -                                                | ND (0.21)              |
| 1,4-Dioxane                                   | -                               | -             | ND (73)                | -             | ND (73)                | -             | ND (73)                | -                                              | ND (73)                    | -             | ND (73)                  | -                                                | ND (73)                | -                                                | ND (73)                | -                                                | ND (73)                |
| Ethylbenzene                                  | 700                             | -             | ND (0.21)              | -             | ND (0.21)              | -             | ND (0.21)              | -                                              | ND (0.21)                  | -             | ND (0.21)                | -                                                | ND (0.21)              | -                                                | ND (0.21)              | -                                                | ND (0.21)              |
| Freon 113<br>2-Hexanone                       |                                 | -             | ND (0.77)<br>ND (1.7)  | -             | ND (0.77)<br>ND (1.7)  | -             | ND (0.77)<br>ND (1.7)  | -                                              | ND (0.77)<br>ND (1.7)      | -             | ND (0.77)<br>ND (1.7)    | <del>                                     </del> | ND (0.77)<br>ND (1.7)  | -                                                | ND (0.77)<br>ND (1.7)  | -                                                | ND (0.77)<br>ND (1.7)  |
| Isopropylbenzene                              | 700                             | -             | ND (0.22)              | -             | ND (0.22)              | -             | 0.61 J                 | _                                              | ND (0.22)                  | -             | ND (0.22)                | -                                                | ND (0.22)              | <del>                                     </del> | ND (0.22)              | -                                                | ND (0.22)              |
| Methyl Acetate                                | 7000                            | -             | ND (1.5)               | -             | ND (1.5)               | -             | ND (1.5)               | -                                              | ND (1.5)                   | -             | ND (1.5)                 | -                                                | ND (1.5)               | -                                                | ND (1.5)               | -                                                | ND (1.5)               |
| Methylcyclohexane                             | -                               | -             | ND (0.15)              | -             | ND (0.15)              | -             | ND (0.15)              | -                                              | ND (0.15)                  | -             | ND (0.15)                | -                                                | ND (0.15)              | -                                                | ND (0.15)              | -                                                | ND (0.15)              |
| Methyl Tert Butyl Ether                       | 70                              | -             | ND (0.29)              | -             | ND (0.29)              | -             | ND (0.29)              | -                                              | ND (0.29)                  | -             | ND (0.29)                | -                                                | 1.1                    | -                                                | ND (0.29)              | -                                                | ND (0.29)              |
| 4-Methyl-2-pentanone(MIBK) Methylene chloride | - 2                             | -             | ND (1.5)<br>ND (0.86)  | -             | ND (1.5)<br>2.6        | -             | ND (1.5)<br>8.4        | -                                              | ND (1.5)<br>ND (0.86)      | -             | ND (1.5)<br>ND (0.86)    | -                                                | ND (1.5)<br>2.3        | -                                                | ND (1.5)<br>ND (0.86)  | -                                                | ND (1.5)<br>ND (0.86)  |
| Styrene                                       | 100                             | -             | ND (0.30)              | -             | ND (0.30)              | -             | ND (0.30)              | -                                              | ND (0.30)                  | -             | ND (0.30)                | -                                                | ND (0.30)              | -                                                | ND (0.30)              | -                                                | ND (0.30)              |
| 1,1,2,2-Tetrachloroethane                     | 1                               | =             | ND (0.20)              | -             | ND (0.20)              | =             | 0.29 J                 | =                                              | ND (0.20)                  | =             | ND (0.20)                | -                                                | ND (0.20)              | -                                                | ND (0.20)              | -                                                | ND (0.20)              |
| Tetrachloroethene                             | 1                               | -             | 1.6                    | -             | ND (0.25)              | -             | 0.79 J                 | -                                              | ND (0.25)                  | -             |                          | J -                                              | 1.2                    | -                                                |                        | J -                                              | ND (0.25)              |
| Toluene<br>1,2,3-Trichlorobenzene             | 600                             | -             | ND (0.44)<br>ND (0.24) | + -           | ND (0.44)<br>ND (0.24) | +             | ND (0.44)<br>ND (0.24) | -                                              | ND (0.44)<br>ND (0.24)     | -             | ND (0.44)<br>ND (0.24)   | +                                                | ND (0.44)<br>ND (0.24) | -                                                | ND (0.44)<br>ND (0.24) | -                                                | ND (0.44)<br>ND (0.24) |
| 1,2,4-Trichlorobenzene                        | 9                               | -             | ND (0.22)              | -             | ND (0.22)              | -             | ND (0.22)              | -                                              | ND (0.22)                  | -             | ND (0.22)                | + - +                                            | ND (0.22)              | -                                                | ND (0.22)              | -                                                | ND (0.22)              |
| 1,1,1-Trichloroethane                         | 30                              | -             | ND (0.25)              | <u> </u>      | ND (0.25)              | <u> </u>      | ND (0.25)              |                                                | ND (0.25)                  | -             | ND (0.25)                |                                                  | ND (0.25)              | -                                                | ND (0.25)              | -                                                | ND (0.25)              |
| 1,1,2-Trichloroethane                         | 3                               | -             | ND (0.21)              |               | ND (0.21)              | -             | ND (0.21)              | -                                              | ND (0.21)                  | -             | ND (0.21)                | -                                                | ND (0.21)              | -                                                | ND (0.21)              | -                                                | ND (0.21)              |
| Trichloroethene<br>Trichlorofluoromethane     | 1<br>2000                       | -             | 64<br>ND (0.33)        | + -           | 0.8<br>ND (0.33)       | J -           | 17.1<br>ND (0.33)      | -                                              | 2<br>ND (0.33)             | -             | ND (0.33)                | +                                                | 5.8<br>ND (0.33)       | -                                                | 44<br>ND (0.33)        | -                                                | 1.6<br>ND (0.33)       |
| Vinyl chloride                                | 1                               | -             | ND (0.41)              |               | ND (0.41)              | - 1           | ND (0.41)              | -                                              | ND (0.41)                  | -             | ND (0.41)                | - +                                              | ND (0.41)              | -                                                | ND (0.41)              | -                                                | ND (0.41)              |
| m,p-Xylene                                    | -                               | -             | ND (0.40)              | - 1           | ND (0.40)              | -             | ND (0.40)              | -                                              | ND (0.40)                  | -             | ND (0.40)                | -                                                | ND (0.40)              | -                                                | ND (0.40)              | -                                                | ND (0.40)              |
| o-Xylene                                      | -                               | -             | ND (0.19)              |               | ND (0.19)              |               | ND (0.19)              | -                                              | ND (0.19)                  | -             | ND (0.19)                | 1                                                | ND (0.19)              | -                                                | ND (0.19)              | <del>                                     </del> | ND (0.19)              |
| Xylene (total)<br>Total VOCs                  | 1000                            | -             | ND (0.19)<br>122.9     | -             | ND (0.19)<br>4.74      | + -           | ND (0.19)<br>83.78     | -                                              | ND (0.19)<br>3.96          | -             | ND (0.19)<br><b>6.21</b> | +                                                | ND (0.19)<br>80.13     | <del>                                     </del> | ND (0.19)<br>47.2      | + - +                                            | ND (0.19)<br>2.9       |
|                                               | <u> </u>                        | <u> </u>      | .22.0                  | 1             |                        |               | 00.70                  | 1                                              | 5.50                       | I             | V.E1                     |                                                  | 55.10                  |                                                  |                        |                                                  |                        |
| GC/MS Volatile TIC                            |                                 |               |                        |               |                        |               |                        |                                                |                            |               |                          |                                                  |                        |                                                  |                        |                                                  |                        |
| Total TIC, Volatile                           | -                               | -             | 0                      | -             |                        |               | 0                      |                                                | 0                          |               |                          | - 1                                              |                        | -                                                |                        |                                                  | 0                      |
| Total Alkanes                                 | -                               | -             | 0                      | -             | 0                      | -             | 0                      | -                                              | 0                          | -             | 0                        | -                                                | 0                      | -                                                | 0                      | -                                                | 0                      |
| Metals Analysis                               |                                 |               |                        |               |                        |               |                        |                                                |                            |               |                          |                                                  |                        |                                                  |                        |                                                  |                        |
| Chromium                                      | 70                              | <10           | <10                    | <10           | 16.4                   | <10           | <10                    | <10                                            | <10                        | <10           | 22.7                     | 12.4                                             | 677                    | 418                                              | 162                    | <10                                              | <10                    |
| Iron                                          | 300                             |               | -                      | 42600         | -                      | <100          | -                      |                                                | -                          | 165           | -                        | 145                                              | -                      | 2920                                             | -                      | 1960                                             | -                      |
| Sodium                                        | 50000                           | -             | 18800                  | -             | 15600                  | -             | 29000                  | -                                              | 54200                      | -             | 14300                    | - 1                                              | 599000                 | -                                                | <10000                 | -                                                | 42000                  |
| Canada Chamista                               |                                 |               |                        |               |                        |               |                        |                                                |                            |               |                          |                                                  |                        |                                                  |                        |                                                  |                        |
| General Chemistry Solids, Total Dissolved     | 500000                          |               | 530000                 | - 1           | 46000                  |               | 307000                 | 1                                              | 297000                     |               | 92000                    |                                                  | 1300000                |                                                  | 203000                 | - 1                                              | 247000                 |
| Sulfate                                       | 250000                          | -             | 214000                 | -             |                        | -             | 154000                 | -                                              | 153000                     | -             |                          | -                                                | 682000                 | -                                                | 106000                 | -                                                | F0000                  |
|                                               |                                 | 1             |                        |               |                        |               | 1                      | ı                                              |                            | 1             |                          | 1                                                |                        |                                                  | 1                      | 1                                                | 1                      |

| Sample II                                      | ID                      | IW1-BT-2      | IW1-DR-1               | IW1-DR-1      | IW-4S                  | PZ-1S                  | PZ-1S         | MW-5I                  | MW-5I         | MW-6S                  | MW-9I                    | MW-9I-DUP              | MW-10S                 | MW-10S      | MW-11I                 | MW-11I       | MW-14S                 |
|------------------------------------------------|-------------------------|---------------|------------------------|---------------|------------------------|------------------------|---------------|------------------------|---------------|------------------------|--------------------------|------------------------|------------------------|-------------|------------------------|--------------|------------------------|
| Lab Sample II                                  |                         | JB57365-8F    | JB57365-12             | JB57365-12F   | JB57365-6              | JB57365-2              | JB57365-2F    | JB57365-17             | JB57365-17F   | JB57510-2              | JB57510-3                | JB57510-4              | JB57365-13             | JB57365-13F | JB57365-16             | JB57365-16F  | JB57365-15             |
| Sample Date                                    | te CRITERIA (7/22/2010) | 1/9/2014      | 1/10/2014              | 1/10/2014     | 1/9/2014               | 1/9/2014               | 1/9/2014      | 1/10/2014              | 1/10/2014     | 1/13/2014              | 1/13/2014                | 1/13/2014              | 1/10/2014              | 1/10/2014   | 1/10/2014              | 1/10/2014    | 1/10/2014              |
| Matri                                          | ix ug/L                 | GW - FILTERED | GW                     | GW - FILTERED | GW                     | GW                     | GW - FILTERED | GW                     | GW - FILTERED | GW                     | GW                       | GW                     | GW                     | GW          | GW                     | GW           | GW                     |
| Uni Volatile Organic Compounds (VOCs)          | nit                     | ug/L          | ug/L                   | ug/L          | ug/L                   | ug/L                   | ug/L          | ug/L                   | ug/L          | ug/L                   | ug/L                     | ug/L                   | ug/L                   | ug/L        | ug/L                   | ug/L         | ug/L                   |
|                                                | 5000                    | 1             | ND (0.0)               | 1             | ND (0.0)               | ND (3.3)               | 1             | ND (0.0)               |               | ND (0.0)               | ND (0.0)                 | ND (0.0)               | ND (0.0)               | 1           | ND (0.0)               | 1            | ND (2.2)               |
| Acetone<br>Benzene                             | 6000                    | -             | ND (3.3)<br>ND (0.28)  | -             | ND (3.3)<br>ND (0.28)  | ND (3.3)<br>ND (0.28)  | -             | ND (3.3)<br>ND (0.28)  | -             | ND (3.3)<br>ND (0.28)  | ND (3.3)<br>ND (0.28)    | ND (3.3)<br>ND (0.28)  | ND (3.3)<br>ND (0.28)  | -           | ND (3.3)<br>ND (0.28)  | -            | ND (3.3)<br>ND (0.28)  |
| Bromochloromethane                             | -                       | -             | ND (0.42)              | -             | ND (0.42)              | ND (0.42)              | 1 -           | ND (0.42)              | -             | ND (0.42)              | ND (0.42)                | ND (0.42)              | ND (0.42)              | -           | ND (0.42)              | 1 -          | ND (0.42)              |
| Bromodichloromethane                           | 1                       | -             | ND (0.21)              | -             | ND (0.21)              | ND (0.21)              | -             | ND (0.21)              | -             | ND (0.21)              | ND (0.21)                | ND (0.21)              | ND (0.21)              | -           | ND (0.21)              | -            | ND (0.21)              |
| Bromoform                                      | 4                       | -             | ND (0.30)              | -             | ND (0.30)              | ND (0.30)              | -             | ND (0.30)              | -             | ND (0.30)              | ND (0.30)                | ND (0.30)              | ND (0.30)              | -           | ND (0.30)              | -            | ND (0.30)              |
| Bromomethane                                   | 10                      | -             | ND (0.56)              | -             | ND (0.56)              | ND (0.56)              | -             | ND (0.56)              | -             | ND (0.56)              | ND (0.56)                | ND (0.56)              | ND (0.56)              | -           | ND (0.56)              | -            | ND (0.56)              |
| 2-Butanone (MEK)                               | 300                     | -             | ND (3.2)               | -             | ND (3.2)               | ND (3.2)               | =             | ND (3.2)               | =             | ND (3.2)               | ND (3.2)                 | ND (3.2)               | ND (3.2)               | =           | ND (3.2)               | =            | ND (3.2)               |
| Carbon disulfide                               | 700                     | -             | ND (0.18)              | -             | ND (0.18)              | ND (0.18)              | -             | ND (0.18)              | -             | ND (0.18)              | ND (0.18)                | ND (0.18)              | ND (0.18)              | -           | ND (0.18)              | -            | ND (0.18)              |
| Carbon tetrachloride                           | 1                       | -             | ND (0.23)              | -             | ND (0.23)              | ND (0.23)              | -             | ND (0.23)              | -             | ND (0.23)              | ND (0.23)                | ND (0.23)              | ND (0.23)              | -           | ND (0.23)              | -            | ND (0.23)              |
| Chlorobenzene                                  | 50                      | -             | ND (0.35)              | -             | ND (0.35)              | ND (0.35)              | -             | ND (0.35)              | -             | ND (0.35)              | ND (0.35)                | ND (0.35)              | ND (0.35)              | -           | ND (0.35)              | -            | ND (0.35)              |
| Chloroethane                                   | -                       | -             | ND (0.39)              | -             | ND (0.39)              | ND (0.39)              | -             | ND (0.39)              | -             | ND (0.39)              | ND (0.39)                | ND (0.39)              | ND (0.39)              | -           | ND (0.39)              | -            | ND (0.39)              |
| Chloroform                                     | 70                      | -             | ND (0.25)              | -             | ND (0.25)              | 0.63                   | J -           | ND (0.25)              | -             | ND (0.25)              | ND (0.25)                | ND (0.25)              | 0.62 J                 | -           | 0.27                   | J -          | ND (0.25)              |
| Chloromethane<br>Cyclohexane                   | -                       | -             | ND (0.36)<br>ND (0.18) | -             | ND (0.36)<br>ND (0.18) | ND (0.36)<br>ND (0.18) | -             | ND (0.36)<br>ND (0.18) | -             | ND (0.36)<br>ND (0.18) | ND (0.36)<br>ND (0.18)   | ND (0.36)<br>ND (0.18) | ND (0.36)<br>ND (0.18) | -           | ND (0.36)<br>ND (0.18) | -            | ND (0.36)<br>ND (0.18) |
| 1,2-Dibromo-3-chloropropane                    | 0.02                    | -             | ND (1.3)               | -             | ND (0.18)              | ND (0.18)              | -             | ND (0.18)              | -             | ND (0.18)              | ND (0.18)                | ND (0.18)              | ND (0.18)              | -           | ND (1.3)               | -            | ND (0.18)              |
| Dibromochloromethane                           | 1                       | -             | ND (0.19)              | -             | ND (0.19)              | ND (0.19)              | - 1           | ND (0.19)              | -             | ND (0.19)              | ND (0.19)                | ND (0.19)              | ND (0.19)              | -           | ND (0.19)              | -            | ND (0.19)              |
| 1,2-Dibromoethane                              | 0.03                    | -             | ND (0.16)              | -             | ND (0.16)              | ND (0.16)              | -             | ND (0.16)              | -             | ND (0.16)              | ND (0.16)                | ND (0.16)              | ND (0.16)              | -           | ND (0.16)              | -            | ND (0.16)              |
| 1,2-Dichlorobenzene                            | 600                     | -             | ND (0.20)              | -             | ND (0.20)              | ND (0.20)              | - 1           | ND (0.20)              | -             | ND (0.20)              | ND (0.20)                | ND (0.20)              | ND (0.20)              | -           | ND (0.20)              | <u> </u>     | ND (0.20)              |
| 1,3-Dichlorobenzene                            | 600                     | -             | ND (0.31)              | -             | ND (0.31)              | ND (0.31)              | -             | ND (0.31)              | -             | ND (0.31)              | ND (0.31)                | ND (0.31)              | ND (0.31)              | -           | ND (0.31)              | -            | ND (0.31)              |
| 1,4-Dichlorobenzene                            | 75                      | -             | ND (0.30)              | -             | ND (0.30)              | ND (0.30)              | -             | ND (0.30)              | -             | ND (0.30)              | ND (0.30)                | ND (0.30)              | ND (0.30)              | -           | ND (0.30)              | -            | ND (0.30)              |
| Dichlorodifluoromethane                        | 1000                    | -             | ND (0.63)              | -             | ND (0.63)              | ND (0.63)              | -             | ND (0.63)              | -             | ND (0.63)              | ND (0.63)                | ND (0.63)              | ND (0.63)              | -           | ND (0.63)              | -            | ND (0.63)              |
| 1,1-Dichloroethane                             | 50                      | -             | ND (0.26)              | -             | ND (0.26)              | ND (0.26)              |               | ND (0.26)              | -             | ND (0.26)              | ND (0.26)                | ND (0.26)              | ND (0.26)              | -           | ND (0.26)              | -            | ND (0.26)              |
| 1,2-Dichloroethane                             | 2                       | -             | ND (0.22)              | -             | ND (0.22)              | 0.56                   | J -           | 1.9                    | -             | ND (0.22)              | ND (0.22)                | ND (0.22)              | 1.2                    | -           | ND (0.22)              | -            | ND (0.22)              |
| 1,1-Dichloroethene<br>cis-1,2-Dichloroethene   | 70                      | -             | ND (0.34)<br>ND (0.24) | -             | ND (0.34)<br>0.8       | ND (0.34)              | -             | ND (0.34)<br>ND (0.24) | -             | ND (0.34)<br>ND (0.24) | ND (0.34)<br>ND (0.24)   | ND (0.34)<br>ND (0.24) | ND (0.34)<br>5.9       | -           | ND (0.34)<br>ND (0.24) | -            | ND (0.34)<br>ND (0.24) |
| trans-1,2-Dichloroethene                       | 100                     | -             | ND (0.24)              | -             | ND (0.38)              | ND (0.38)              | -             | ND (0.38)              | -             | ND (0.24)              | ND (0.24)                | ND (0.38)              | ND (0.38)              | -           | ND (0.24)              | -            | ND (0.38)              |
| 1,2-Dichloropropane                            | 100                     | -             | ND (0.28)              | -             | ND (0.28)              | ND (0.28)              | -             | ND (0.28)              | -             | ND (0.28)              | ND (0.28)                | ND (0.28)              | ND (0.28)              | -           | ND (0.28)              | <del>-</del> | ND (0.28)              |
| cis-1,3-Dichloropropene                        | -                       | -             | ND (0.15)              | -             | ND (0.15)              | ND (0.15)              | -             | ND (0.15)              | -             | ND (0.15)              | ND (0.15)                | ND (0.15)              | ND (0.15)              | -           | ND (0.15)              | -            | ND (0.15)              |
| trans-1,3-Dichloropropene                      | -                       | -             | ND (0.21)              | -             | ND (0.21)              | ND (0.21)              | -             | ND (0.21)              | -             | ND (0.21)              | ND (0.21)                | ND (0.21)              | ND (0.21)              | -           | ND (0.21)              | -            | ND (0.21)              |
| 1,4-Dioxane                                    | -                       | -             | ND (73)                | -             | ND (73)                | ND (73)                | -             | ND (73)                | -             | ND (73)                | ND (73)                  | ND (73)                | ND (73)                | -           | ND (73)                | -            | ND (73)                |
| Ethylbenzene                                   | 700                     | -             | ND (0.21)              | -             | ND (0.21)              | ND (0.21)              | -             | ND (0.21)              | -             | ND (0.21)              | ND (0.21)                | ND (0.21)              | ND (0.21)              | -           | ND (0.21)              | -            | ND (0.21)              |
| Freon 113                                      | -                       | -             | ND (0.77)              | -             | ND (0.77)              | ND (0.77)              | -             | ND (0.77)              | -             | ND (0.77)              | ND (0.77)                | ND (0.77)              | ND (0.77)              | -           | ND (0.77)              | -            | ND (0.77)              |
| 2-Hexanone                                     | -                       | -             | ND (1.7)               | -             | ND (1.7)               | ND (1.7)               | -             | ND (1.7)               | -             | ND (1.7)               | ND (1.7)                 | ND (1.7)               | ND (1.7)               | -           | ND (1.7)               | -            | ND (1.7)               |
| Isopropylbenzene                               | 700                     | -             | ND (0.22)              | -             | ND (0.22)              | ND (0.22)              | -             | ND (0.22)              | -             | ND (0.22)              | ND (0.22)                | ND (0.22)              | ND (0.22)              | -           | ND (0.22)              | -            | ND (0.22)              |
| Methyl Acetate Methylcyclohexane               | 7000                    | -             | ND (1.5)<br>ND (0.15)  | -             | ND (1.5)<br>ND (0.15)  | ND (1.5)<br>ND (0.15)  | -             | ND (1.5)<br>ND (0.15)  | -             | ND (1.5)<br>ND (0.15)  | ND (1.5)<br>ND (0.15)    | ND (1.5)<br>ND (0.15)  | ND (1.5)<br>ND (0.15)  | -           | ND (1.5)<br>ND (0.15)  | -            | ND (1.5)<br>ND (0.15)  |
| Methyl Tert Butyl Ether                        | 70                      | -             | ND (0.29)              | -             | ND (0.19)              | ND (0.19)              | -             | ND (0.29)              | -             | ND (0.29)              | ND (0.29)                | ND (0.29)              | ND (0.29)              | -           | ND (0.19)              | -            | ND (0.29)              |
| 4-Methyl-2-pentanone(MIBK)                     | -                       | -             | ND (1.5)               | -             | ND (1.5)               | ND (1.5)               | -             | ND (1.5)               | -             | ND (1.5)               | ND (1.5)                 | ND (1.5)               | ND (1.5)               | -           | ND (1.5)               | -            | ND (1.5)               |
| Methylene chloride                             | 3                       | -             | ND (0.86)              | -             | ND (0.86)              | ND (0.86)              | -             | ND (0.86)              | -             | ND (0.86)              | ND (0.86)                | ND (0.86)              | ND (0.86)              | -           | ND (0.86)              | -            | ND (0.86)              |
| Styrene<br>1,1,2,2-Tetrachloroethane           | 100                     | -             | ND (0.30)<br>ND (0.20) | +             | ND (0.30)<br>ND (0.20) | ND (0.30)<br>ND (0.20) | -             | ND (0.30)<br>ND (0.20) | -             | ND (0.30)<br>ND (0.20) | ND (0.30)<br>ND (0.20)   | ND (0.30)<br>ND (0.20) | ND (0.30)<br>ND (0.20) | -           | ND (0.30)<br>ND (0.20) | -            | ND (0.30)<br>ND (0.20) |
| Tetrachloroethene                              | 1                       | -             | 0.72                   | J -           | ND (0.25)              | ND (0.25)              | -             | ND (0.25)              | -             | ND (0.25)              | ND (0.25)                | ND (0.25)              | ND (0.25)              | -           | ND (0.25)              | -            | ND (0.25)              |
| Toluene                                        | 600                     | -             | ND (0.44)              | -             | ND (0.44)              | ND (0.44)              |               | ND (0.44)              | -             | ND (0.44)              | ND (0.44)                | ND (0.44)              | ND (0.44)              | -           | ND (0.44)              | -            | ND (0.44)              |
| 1,2,3-Trichlorobenzene                         | -                       | -             | ND (0.24)              | -             | ND (0.24)              | ND (0.24)              | -             | ND (0.24)              | -             | ND (0.24)              | ND (0.24)                | ND (0.24)              | ND (0.24)              | -           | ND (0.24)              | -            | ND (0.24)              |
| 1,2,4-Trichlorobenzene                         | 9                       | -             | ND (0.22)              | -             | ND (0.22)              | ND (0.22)              | -             | ND (0.22)              | -             | ND (0.22)              | ND (0.22)                | ND (0.22)              | ND (0.22)              | -           | ND (0.22)              |              | ND (0.22)              |
| 1,1,1-Trichloroethane<br>1,1,2-Trichloroethane | 30                      | -             | ND (0.25)<br>ND (0.21) | -             | ND (0.25)<br>ND (0.21) | ND (0.25)<br>ND (0.21) | -             | ND (0.25)<br>ND (0.21) | -             | 0.42<br>ND (0.21)      | J ND (0.25)<br>ND (0.21) | ND (0.25)<br>ND (0.21) | ND (0.25)<br>ND (0.21) | -           | 1.6<br>ND (0.21)       | -            | ND (0.25)<br>ND (0.21) |
| Trichloroethene                                | 1                       | -             | 1.1                    | -             | 2.4                    | 2                      | -             | ND (0.50)              | -             | ND (0.50)              | ND (0.50)                | ND (0.50)              | 5.5                    | -           | ND (0.50)              | -            | ND (0.50)              |
| Trichlorofluoromethane                         | 2000                    | -             | ND (0.33)              | -             | ND (0.33)              | ND (0.33)              | -             | ND (0.33)              | -             | ND (0.33)              | ND (0.33)                | ND (0.33)              | ND (0.33)              | -           | ND (0.33)              | -            | ND (0.33)              |
| Vinyl chloride                                 | 1                       | -             | ND (0.41)              | -             | ND (0.41)              | ND (0.41)              | -             | ND (0.41)              | -             | ND (0.41)              | ND (0.41)                | ND (0.41)              | ND (0.41)              | -           | ND (0.41)              | -            | ND (0.41)              |
| m,p-Xylene<br>o-Xylene                         | -                       | -             | ND (0.40)<br>ND (0.19) | -             | ND (0.40)<br>ND (0.19) | ND (0.40)<br>ND (0.19) | +             | ND (0.40)<br>ND (0.19) | -             | ND (0.40)<br>ND (0.19) | ND (0.40)<br>ND (0.19)   | ND (0.40)<br>ND (0.19) | ND (0.40)<br>ND (0.19) | -           | ND (0.40)<br>ND (0.19) | -            | ND (0.40)<br>ND (0.19) |
| Xylene (total)                                 | 1000                    | -             | ND (0.19)              | <del>-</del>  | ND (0.19)              | ND (0.19)              | -             | ND (0.19)              | -             | ND (0.19)              | ND (0.19)                |                        | ND (0.19)              |             | ND (0.19)              | -            | ND (0.19)              |
| Total VOCs                                     |                         |               | 1.82                   |               | 3.2                    | 4.59                   |               | 1.9                    |               | 0.42                   | 0                        | 0                      | 13.22                  |             | 1.87                   |              |                        |
|                                                |                         |               |                        |               |                        |                        |               |                        |               |                        |                          |                        |                        |             |                        |              |                        |
| GC/MS Volatile TIC                             |                         |               |                        |               |                        |                        | ,             |                        |               |                        |                          |                        |                        |             |                        |              |                        |
| Total TIC, Volatile<br>Total Alkanes           | -                       | -             | 0                      | -             | 0 0                    |                        | -             | 0                      |               | 0                      | 0                        | 0                      | 0                      | -           | 0                      | -            | 0                      |
| TOTAL AIRAITES                                 | <u> </u>                | 1 -           | U                      |               | U U                    | U                      | <u> </u>      | U                      | -             | U                      | U                        | U                      | U                      | -           | ı                      | <u> </u>     |                        |
| Metals Analysis                                |                         |               |                        |               |                        |                        |               |                        |               |                        |                          |                        |                        |             |                        |              |                        |
| Chromium                                       | 70                      | <10           | <10                    | <10           | -                      | <10                    | <10           | <10                    |               | - 1                    | - 1                      | -                      | <10                    |             | <10                    | <10          | <10                    |
| Iron                                           | 300                     | 235           | -                      | 27500         | -                      |                        | <100          | -                      | 134           | -                      | -                        | -                      | -                      | <100        | -                      | <100         |                        |
| Sodium                                         | 50000                   | -             | 12200                  | -             | -                      | 16500                  | -             | <10000                 | -             | -                      | -                        | -                      | 25500                  | -           | <10000                 | -            | 229000                 |
| General Chemistry                              |                         |               |                        |               |                        |                        |               |                        |               |                        |                          |                        |                        |             |                        |              |                        |
| Solids, Total Dissolved                        | 500000                  | - 1           | 218000                 | -             | - 1                    | 384000                 | - 1           | 205000                 | - 1           | - 1                    | - 1                      |                        | 214000                 | -           | 118000                 | - 1          | 1090000                |
| Sulfate                                        | 250000                  | -             | 101000                 | -             | -                      | 177000                 | -             | 68000                  | -             | - 1                    | -                        | -                      | 84800                  | -           | 39900                  | -            |                        |
|                                                | •                       |               |                        |               |                        | ·                      |               | •                      |               |                        | •                        |                        |                        | •           |                        | _ ·          | <del></del>            |

| Sample ID                                            | )                    | MW-14S      | MW-14SD                | MW-14SD     | MW-15D                 | MW-19S                 | MW-23S                 | MW-23I                     | MW-23D                 | MW-24                   | MW-28                                 | WCC-1S                                           | WCC-1M                 | WCC-3M                  | EW-3                   | EB-01_05122014           | EB-01_05122014 |
|------------------------------------------------------|----------------------|-------------|------------------------|-------------|------------------------|------------------------|------------------------|----------------------------|------------------------|-------------------------|---------------------------------------|--------------------------------------------------|------------------------|-------------------------|------------------------|--------------------------|----------------|
| Lab Sample ID                                        |                      | JB57365-15F | JB57365-14             | JB57365-14F | JB57510-9              | JB57510-7              | JB57131-2              | JB57131-3                  | JB57131-1              | JB57510-1               | JB57510-8                             | JB57510-6                                        | JB57510-5              | JB57510-10              | JB59106-3              | JB66824-5                | JB66824-5F     |
| Sample Date                                          | CRITERIA (7/22/2010) | 1/10/2014   | 1/10/2014              | 1/10/2014   | 1/13/2014              | 1/13/2014              | 1/6/2014               | 1/6/2014                   | 1/6/2014               | 1/13/2014               | 1/13/2014                             | 1/13/2014                                        | 1/13/2014              | 1/13/2014               | 2/3/2014               | 5/12/2014                | 5/12/2014      |
| Matrix<br>Unit                                       | ug/L                 | GW          | GW                     | GW<br>ug/L  | GW                     | GW                     | GW                     | GW                         | GW<br>ug/L             | GW                      | GW                                    | GW                                               | GW                     | GW<br>ug/L              | GW                     | WATER                    | WATER-FILTERED |
| Volatile Organic Compounds (VOCs)                    |                      | ug/L        | ug/L                   | ug/L        | ug/L                   | ug/L                   | ug/L                   | ug/L                       | ug/L                   | ug/L                    | ug/L                                  | ug/L                                             | ug/L                   | ug/L                    | ug/L                   | ug/L                     | ug/L           |
| Acetone                                              | 6000                 | -           | ND (3.3)               | =           | ND (3.3)               | ND (3.3)               | ND (3.3)               | ND (3.3)                   | ND (3.3)               | ND (3.3)                | ND (3.3)                              | ND (3.3)                                         | ND (3.3)               | ND (3.3)                | ND (3.3)               | ND (3.3)                 | -              |
| Benzene                                              | 1                    | -           | ND (0.28)              | -           | ND (0.28)              | ND (0.28)              | ND (0.28)              | ND (0.28)                  | ND (0.28)              | ND (0.28)               | ND (0.28)                             | ND (0.28)                                        | ND (0.28)              | ND (0.28)               | ND (0.28)              | ND (0.28)                | =              |
| Bromochloromethane                                   | -                    | -           | ND (0.42)              | -           | ND (0.42)              | ND (0.42)              | ND (0.42)              | ND (0.42)                  | ND (0.42)              | ND (0.42)               | ND (0.42)                             | ND (0.42)                                        | ND (0.42)              | ND (0.42)               | ND (0.42)              | ND (0.42)                | =              |
| Bromodichloromethane<br>Bromoform                    | 1 4                  | -           | ND (0.21)<br>ND (0.30) | -           | ND (0.21)<br>ND (0.30) | ND (0.21)<br>ND (0.30) | ND (0.21)<br>ND (0.30) | ND (0.21)<br>ND (0.30)     | ND (0.21)<br>ND (0.30) | ND (0.21)<br>ND (0.30)  | ND (0.21)<br>ND (0.30)                | ND (0.21)<br>ND (0.30)                           | ND (0.21)<br>ND (0.30) | ND (0.21)<br>ND (0.30)  | ND (0.21)<br>ND (0.30) | ND (0.21)<br>ND (0.30)   | =              |
| Bromomethane                                         | 10                   | -           | ND (0.56)              | -           | ND (0.56)              | ND (0.56)              | ND (0.56)              | ND (0.56)                  | ND (0.56)              | ND (0.56)               | ND (0.56)                             | ND (0.56)                                        | ND (0.56)              | ND (0.56)               | ND (0.56)              | ND (0.30)<br>ND (0.56)   | -              |
| 2-Butanone (MEK)                                     | 300                  | -           | ND (3.2)               | -           | ND (3.2)               | ND (3.2)               | ND (3.2)               | ND (3.2)                   | ND (3.2)               | ND (3.2)                | ND (3.2)                              | ND (3.2)                                         | ND (3.2)               | ND (3.2)                | ND (3.2)               | ND (3.2)                 | <u>-</u>       |
| Carbon disulfide                                     | 700                  | -           | ND (0.18)              | -           | ND (0.18)              | ND (0.18)              | ND (0.18)              | ND (0.18)                  | ND (0.18)              | ND (0.18)               | ND (0.18)                             | ND (0.18)                                        | ND (0.18)              | ND (0.18)               | ND (0.18)              | ND (0.18)                | =              |
| Carbon tetrachloride                                 | 1                    | -           | ND (0.23)              | -           | ND (0.23)              | ND (0.23)              | ND (0.23)              | ND (0.23)                  | ND (0.23)              | ND (0.23)               | ND (0.23)                             | ND (0.23)                                        | ND (0.23)              | ND (0.23)               | ND (0.23)              | ND (0.23)                | -              |
| Chloroethane                                         | 50                   | -           | ND (0.35)<br>ND (0.39) | -           | ND (0.35)<br>ND (0.39) | ND (0.35)<br>ND (0.39) | ND (0.35)<br>ND (0.39) | ND (0.35)<br>ND (0.39)     | ND (0.35)<br>ND (0.39) | ND (0.35)<br>ND (0.39)  | ND (0.35)<br>ND (0.39)                | ND (0.35)<br>ND (0.39)                           | ND (0.35)<br>ND (0.39) | ND (0.35)<br>ND (0.39)  | ND (0.35)<br>ND (0.39) | ND (0.35)                | -              |
| Chloroform                                           | 70                   | -           | ND (0.39)<br>ND (0.25) | -           | ND (0.39)<br>ND (0.25) | ND (0.39)<br>ND (0.25) | 1.6                    | ND (0.25)                  | ND (0.39)              | ND (0.39)               | ND (0.39)<br>ND (0.25)                | ND (0.39)                                        | 0.46                   | J 0.5 J                 | ND (0.39)              | ND (0.39)<br>ND (0.25)   | -              |
| Chloromethane                                        | -                    | -           | ND (0.36)              | -           | ND (0.36)              | ND (0.36)              | ND (0.36)              | ND (0.36)                  | ND (0.36)              | ND (0.36)               | ND (0.36)                             | ND (0.36)                                        | ND (0.36)              | ND (0.36)               | ND (0.36)              | ND (0.36)                | -              |
| Cyclohexane                                          | -                    | -           | ND (0.18)              | -           | ND (0.18)              | 1.1 J                  | ND (0.18)              | ND (0.18)                  | ND (0.18)              | ND (0.18)               | ND (0.18)                             | ND (0.18)                                        | ND (0.18)              | ND (0.18)               | ND (0.18)              | ND (0.18)                | -              |
| 1,2-Dibromo-3-chloropropane                          | 0.02                 | -           | ND (1.3)               | -           | ND (1.3)               | ND (1.3)               | ND (1.3)               | ND (1.3)                   | ND (1.3)               | ND (1.3)                | ND (1.3)                              | ND (1.3)                                         | ND (1.3)               | ND (1.3)                | ND (1.3)               | ND (1.3)                 | -              |
| Dibromochloromethane<br>1,2-Dibromoethane            | 0.03                 | -           | ND (0.19)<br>ND (0.16) | -           | ND (0.19)<br>ND (0.16) | ND (0.19)<br>ND (0.16) | ND (0.19)<br>ND (0.16) | ND (0.19)<br>ND (0.16)     | ND (0.19)<br>ND (0.16) | ND (0.19)<br>ND (0.16)  | ND (0.19)<br>ND (0.16)                | ND (0.19)<br>ND (0.16)                           | ND (0.19)<br>ND (0.16) | ND (0.19)<br>ND (0.16)  | ND (0.19)<br>ND (0.16) | ND (0.19)<br>ND (0.16)   | -              |
| 1,2-Dichlorobenzene                                  | 600                  | -           | ND (0.10)              | -           | ND (0.10)              | ND (0.10)              | ND (0.10)              | ND (0.20)                  | ND (0.10)              | ND (0.10)               | ND (0.10)                             | ND (0.10)                                        | ND (0.20)              | ND (0.10)               | ND (0.20)              | ND (0.16)                | -              |
| 1,3-Dichlorobenzene                                  | 600                  | -           | ND (0.31)              | -           | ND (0.31)              | ND (0.31)              | ND (0.31)              | ND (0.31)                  | ND (0.31)              | ND (0.31)               | ND (0.31)                             | ND (0.31)                                        | ND (0.31)              | ND (0.31)               | ND (0.31)              | ND (0.31)                | -              |
| 1,4-Dichlorobenzene                                  | 75                   | -           | ND (0.30)              | -           | ND (0.30)              | ND (0.30)              | ND (0.30)              | ND (0.30)                  | ND (0.30)              | ND (0.30)               | ND (0.30)                             | ND (0.30)                                        | ND (0.30)              | ND (0.30)               | ND (0.30)              | ND (0.30)                | -              |
| Dichlorodifluoromethane                              | 1000                 | -           | ND (0.63)              | -           | ND (0.63)              | ND (0.63)              | ND (0.63)              | ND (0.63)                  | ND (0.63)              | ND (0.63)               | ND (0.63)                             | ND (0.63)                                        | ND (0.63)              | ND (0.63)               | ND (0.63)              | ND (0.63)                | -              |
| 1,1-Dichloroethane<br>1,2-Dichloroethane             | 50<br>2              | -           | ND (0.26)<br>ND (0.22) | -           | ND (0.26)<br>ND (0.22) | 0.42 J<br>ND (0.22)    | ND (0.26)<br>15.6      | ND (0.26)<br>ND (0.22)     | ND (0.26)<br>ND (0.22) | ND (0.26)<br>ND (0.22)  | ND (0.26)<br>ND (0.22)                | ND (0.26)<br>ND (0.22)                           | ND (0.26)<br>35.1      | ND (0.26)<br>ND (0.22)  | ND (0.26)<br>ND (0.22) | ND (0.26)<br>ND (0.22)   | -              |
| 1,1-Dichloroethene                                   | 1                    | -           | ND (0.34)              | -           | 2                      | ND (0.34)              | ND (0.34)              | ND (0.34)                  | ND (0.34)              | ND (0.34)               | ND (0.34)                             | ND (0.34)                                        | ND (0.34)              | 0.43 J                  | ND (0.34)              | ND (0.22)                | -              |
| cis-1,2-Dichloroethene                               | 70                   | -           | ND (0.24)              | -           | ND (0.24)              | 5.4                    | 5.1                    | ND (0.24)                  | ND (0.24)              | ND (0.24)               | ND (0.24)                             | ND (0.24)                                        | 7.7                    | ND (0.24)               | ND (0.24)              | ND (0.24)                | -              |
| trans-1,2-Dichloroethene                             | 100                  | -           | ND (0.38)              | -           | ND (0.38)              | 1.8                    | ND (0.38)              | ND (0.38)                  | ND (0.38)              | ND (0.38)               | ND (0.38)                             | ND (0.38)                                        | ND (0.38)              | ND (0.38)               | ND (0.38)              | ND (0.38)                | -              |
| 1,2-Dichloropropane                                  | 1                    | -           | ND (0.28)<br>ND (0.15) | -           | ND (0.28)<br>ND (0.15) | ND (0.28)<br>ND (0.15) | ND (0.28)<br>ND (0.15) | ND (0.28)<br>ND (0.15)     | ND (0.28)<br>ND (0.15) | ND (0.28)<br>ND (0.15)  | ND (0.28)<br>ND (0.15)                | ND (0.28)<br>ND (0.15)                           | ND (0.28)              | ND (0.28)<br>ND (0.15)  | ND (0.28)<br>ND (0.15) | ND (0.28)                | -              |
| cis-1,3-Dichloropropene<br>trans-1,3-Dichloropropene | -                    | -           | ND (0.15)<br>ND (0.21) | -           | ND (0.15)<br>ND (0.21) | ND (0.15)<br>ND (0.21) | ND (0.15)<br>ND (0.21) | ND (0.15)<br>ND (0.21)     | ND (0.15)<br>ND (0.21) | ND (0.15)<br>ND (0.21)  | ND (0.15)<br>ND (0.21)                | ND (0.15)<br>ND (0.21)                           | ND (0.15)<br>ND (0.21) | ND (0.15)<br>ND (0.21)  | ND (0.15)<br>ND (0.21) | ND (0.15)<br>ND (0.21)   | -              |
| 1,4-Dioxane                                          | -                    | -           | ND (73)                | -           | ND (73)                | ND (73)                | ND (73)                | ND (73)                    | ND (73)                | ND (73)                 | ND (73)                               | ND (73)                                          | ND (73)                | ND (73)                 | ND (73)                | ND (73)                  | -              |
| Ethylbenzene                                         | 700                  | -           | ND (0.21)              | -           | ND (0.21)              | 5.3                    | ND (0.21)              | ND (0.21)                  | ND (0.21)              | ND (0.21)               | ND (0.21)                             | ND (0.21)                                        | ND (0.21)              | ND (0.21)               | ND (0.21)              | ND (0.21)                | -              |
| Freon 113                                            | -                    | -           | ND (0.77)              | -           | ND (0.77)              | ND (0.77)              | ND (0.77)              | ND (0.77)                  | ND (0.77)              | ND (0.77)               | ND (0.77)                             | ND (0.77)                                        | ND (0.77)              | ND (0.77)               | ND (0.77)              | ND (0.77)                | -              |
| 2-Hexanone<br>Isopropylbenzene                       | 700                  | -           | ND (1.7)<br>ND (0.22)  | -           | ND (1.7)<br>ND (0.22)  | ND (1.7)<br>0.77 J     | ND (1.7)<br>ND (0.22)  | ND (1.7)<br>ND (0.22)      | ND (1.7)<br>ND (0.22)  | ND (1.7)<br>ND (0.22)   | ND (1.7)<br>0.28 J                    | ND (1.7)<br>ND (0.22)                            | ND (1.7)<br>ND (0.22)  | ND (1.7)<br>ND (0.22)   | ND (1.7)<br>ND (0.22)  | ND (1.7)<br>ND (0.22)    | -              |
| Methyl Acetate                                       | 7000                 | -           | ND (0.22)              | -           | ND (1.5)               | ND (1.5)               | ND (1.5)               | ND (1.5)                   | ND (0.22)              | ND (1.5)                | ND (1.5)                              | ND (0.22)                                        | ND (1.5)               | ND (0.22)               | ND (0.22)              | ND (0.22)<br>ND (1.5)    | -              |
| Methylcyclohexane                                    | -                    | -           | ND (0.15)              | -           | ND (0.15)              | 1.8 J                  | ND (0.15)              | ND (0.15)                  | ND (0.15)              | ND (0.15)               | 0.4 J                                 | ND (0.15)                                        | ND (0.15)              | ND (0.15)               | ND (0.15)              | ND (0.15)                | -              |
| Methyl Tert Butyl Ether                              | 70                   | -           | ND (0.29)<br>ND (1.5)  | -           | ND (0.29)<br>ND (1.5)  | ND (0.29)<br>ND (1.5)  | ND (0.29)<br>ND (1.5)  | ND (0.29)<br>ND (1.5)      | 0.63<br>ND (1.5)       | J ND (0.29)<br>ND (1.5) | ND (0.29)<br>ND (1.5)                 | ND (0.29)<br>ND (1.5)                            | ND (0.29)<br>ND (1.5)  | 1.3<br>ND (1.5)         | ND (0.29)<br>ND (1.5)  | ND (0.29)<br>ND (1.5)    | -              |
| 4-Methyl-2-pentanone(MIBK) Methylene chloride        | 3                    | -           | ND (0.86)              | -           | ND (0.86)              | ND (0.86)              | 4.7                    | ND (0.86)                  | ND (0.86)              | ND (0.86)               | ND (0.86)                             | ND (0.86)                                        | ND (0.86)              | ND (0.86)               | ND (0.86)              | ND (1.5)                 | -              |
| Styrene                                              | 100                  | -           | ND (0.30)              | -           | ND (0.30)              | ND (0.30)              | ND (0.30)              | ND (0.30)                  | ND (0.30)              | ND (0.30)               | ND (0.30)                             | ND (0.30)                                        | ND (0.30)              | ND (0.30)               | ND (0.30)              | ND (0.30)                | -              |
| 1,1,2,2-Tetrachloroethane Tetrachloroethene          | 1 1                  | -           | ND (0.20)<br>ND (0.25) | -           | ND (0.20)<br>ND (0.25) | ND (0.20)<br>ND (0.25) | 0.36<br>0.27           | J ND (0.20)<br>J ND (0.25) | ND (0.20)<br>ND (0.25) | ND (0.20)<br>ND (0.25)  | ND (0.20)<br>0.27 J                   | ND (0.20)<br>ND (0.25)                           | 0.29<br>0.27           | J 0.23 J<br>J ND (0.25) | 0.48<br>ND (0.25)      | J ND (0.20)<br>ND (0.25) | -              |
| Toluene                                              | 600                  | -           | ND (0.44)              |             | ND (0.44)              | ND (0.44)              | ND (0.44)              | ND (0.44)                  | ND (0.44)              | ND (0.44)               | ND (0.44)                             | ND (0.44)                                        | ND (0.44)              | ND (0.44)               | ND (0.44)              | ND (0.23)                | -              |
| 1,2,3-Trichlorobenzene                               | -                    | -           | ND (0.24)              | -           | ND (0.24)              | ND (0.24)              | ND (0.24)              | ND (0.24)                  | ND (0.24)              | ND (0.24)               | ND (0.24)                             | ND (0.24)                                        | ND (0.24)              | ND (0.24)               | ND (0.24)              | ND (0.24)                | -              |
| 1,2,4-Trichlorobenzene<br>1,1,1-Trichloroethane      | 9 30                 | -           | ND (0.22)<br>ND (0.25) |             | ND (0.22)<br>ND (0.25) | ND (0.22)<br>ND (0.25) | ND (0.22)<br>ND (0.25) | ND (0.22)<br>ND (0.25)     | ND (0.22)<br>ND (0.25) | ND (0.22)<br>ND (0.25)  | ND (0.22)<br>ND (0.25)                | ND (0.22)<br>ND (0.25)                           | ND (0.22)<br>ND (0.25) | ND (0.22)<br>ND (0.25)  | ND (0.22)<br>ND (0.25) | ND (0.22)<br>ND (0.25)   | -              |
| 1,1,2-Trichloroethane                                | 3                    | -           | ND (0.21)              | -           | ND (0.21)              | ND (0.21)              | ND (0.21)              | ND (0.21)                  | ND (0.21)              | ND (0.21)               | ND (0.21)                             | ND (0.21)                                        | ND (0.21)              | ND (0.21)               | ND (0.21)              | ND (0.21)                | -              |
| Trichloroethene                                      | 1                    | -           | ND (0.50)<br>ND (0.33) | -           | ND (0.50)              | 4<br>ND (0.33)         | 7.3<br>ND (0.33)       | ND (0.50)<br>ND (0.33)     | ND (0.50)              | ND (0.50)<br>ND (0.33)  | ND (0.50)<br>ND (0.33)                | ND (0.50)<br>ND (0.33)                           | 5.1<br>ND (0.33)       | ND (0.50)<br>ND (0.33)  | ND (0.50)<br>ND (0.33) | ND (0.50)                | -              |
| Trichlorofluoromethane Vinyl chloride                | 2000                 | -           | ND (0.33)<br>ND (0.41) | -           | ND (0.33)<br>ND (0.41) | ND (0.33)<br>ND (0.41) | ND (0.33)<br>ND (0.41) | ND (0.33)<br>ND (0.41)     | ND (0.33)<br>ND (0.41) | ND (0.33)<br>ND (0.41)  | ND (0.33)<br>ND (0.41)                | ND (0.33)<br>ND (0.41)                           | ND (0.33)<br>ND (0.41) | ND (0.33)<br>ND (0.41)  | ND (0.33)<br>ND (0.41) | ND (0.33)<br>ND (0.41)   | -              |
| m,p-Xylene                                           | -                    | -           | ND (0.40)              | -           | ND (0.40)              | 1.3                    | ND (0.40)              | ND (0.40)                  | ND (0.40)              | ND (0.40)               | ND (0.40)                             | ND (0.40)                                        | ND (0.40)              | ND (0.40)               | ND (0.40)              | ND (0.40)                | -              |
| o-Xylene<br>Xylene (total)                           | 1000                 | -           | ND (0.19)<br>ND (0.19) | -           | ND (0.19)<br>ND (0.19) | 1.3<br>2.5             | ND (0.19)<br>ND (0.19) | ND (0.19)<br>ND (0.19)     | ND (0.19)<br>ND (0.19) | ND (0.19)<br>ND (0.19)  | ND (0.19)<br>ND (0.19)                | ND (0.19)<br>ND (0.19)                           | ND (0.19)<br>ND (0.19) | ND (0.19)<br>ND (0.19)  | ND (0.19)<br>ND (0.19) | ND (0.19)<br>ND (0.19)   | -              |
| Total VOCs                                           | -                    |             | 0                      | · ·         | 2                      | 23.09                  | (/                     | 0                          | 0.63                   | 0                       | ( 7                                   | 0                                                | 48.92                  | 2.46                    | 0.48                   | 0<br>ND (0.19)           | -              |
|                                                      | •                    |             |                        |             |                        | •                      | •                      |                            |                        |                         |                                       |                                                  | •                      |                         |                        |                          | · ·            |
| GC/MS Volatile                                       |                      |             |                        | ,           |                        | 175.0                  |                        |                            |                        |                         | 150.0                                 |                                                  | 77                     |                         |                        | 1 22                     | 1              |
| Total TIC, Volatile<br>Total Alkanes                 | -                    | -           | 0                      | -           | 0                      |                        |                        | 0                          |                        | 0                       |                                       | 0 0                                              | 7.7                    | J 0                     | 0                      |                          | J -            |
|                                                      |                      |             |                        |             |                        |                        |                        |                            |                        |                         | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · ·            |                        |                         | · · · · · ·            |                          |                |
| Metals Analysis                                      |                      |             |                        |             |                        |                        |                        |                            |                        |                         |                                       |                                                  |                        |                         |                        |                          |                |
| Chromium<br>Iron                                     | 70<br>300            | <10<br><100 | <10                    | <10<br><100 | -                      | -                      | -                      | -                          | -                      | -                       |                                       | -                                                | -                      | -                       | -                      | <10                      | <10<br><100    |
| Sodium                                               | 50000                |             | 228000                 | -           | -                      |                        | -                      | -                          | -                      | -                       |                                       |                                                  | -                      | -                       | -                      |                          | -              |
|                                                      |                      |             |                        |             |                        |                        |                        |                            |                        |                         |                                       |                                                  |                        |                         |                        |                          |                |
| General Chemistry Solids, Total Dissolved            | 500000               | _           | 1440000                |             | 1 -                    |                        |                        |                            |                        |                         | 1 - 1                                 | 1 - 1                                            |                        |                         |                        | <10000                   |                |
| Sulfate                                              | 250000               | -           | 394000                 |             | +                      | -                      | -                      | -                          | -                      | -                       | -                                     | <del>                                     </del> | <del>-</del>           | -                       | -                      | <10000                   | -              |
|                                                      |                      |             |                        |             |                        |                        | •                      |                            |                        |                         |                                       |                                                  | •                      |                         |                        | •                        |                |

|                                                 | Sample ID NJ CLASS IIA                   | EB-02_05132014         | EB-02_05132014          | EB-03_05142014          | EB-03_05142014           | TB-01_05132014          | TB-02 _05142014         | 1RND1_ISCOMW-1          | 1RND1_ISCOMW-1           | 1RND1_ISCOMW-2             | 1RND1_ISCOMW-2           | 1RND1_ISCOMW-3         | 1RND1_ISCOMW-3          | 1RND1_ISCOMW-4         | 1RND1_ISCOMW-4          | 1RND1_ISCOMW-5             |
|-------------------------------------------------|------------------------------------------|------------------------|-------------------------|-------------------------|--------------------------|-------------------------|-------------------------|-------------------------|--------------------------|----------------------------|--------------------------|------------------------|-------------------------|------------------------|-------------------------|----------------------------|
|                                                 | Sample ID GROUNDWATER QUALITY ample Date | JB66824-9<br>5/13/2014 | JB66824-9F<br>5/13/2014 | JB66824-19<br>5/14/2014 | JB66824-19F<br>5/14/2014 | JB66824-10<br>5/13/2014 | JB66824-20<br>5/14/2014 | JB66824-14<br>5/14/2014 | JB66824-14F<br>5/14/2014 | JB66824-15<br>5/14/2014    | JB66824-15F<br>5/14/2014 | JB66824-4<br>5/12/2014 | JB66824-4F<br>5/12/2014 | JB66824-2<br>5/12/2014 | JB66824-2F<br>5/12/2014 | JB66824-16<br>5/14/2014    |
| 34                                              | Matrix (7/22/2010)                       | WATER                  | WATER-FILTERED          | WATER                   | WATER-FILTERED           | WATER                   | WATER                   | GW                      | GW-FILTERED              | 3/14/2014<br>GW            | GW-FILTERED              | 3/12/2014<br>GW        | GW-FILTERED             | 3/12/2014<br>GW        | GW-FILTERED             | 3/14/2014<br>GW            |
|                                                 | ug/L<br>Unit                             | ug/L                   | ug/L                    | ug/L                    | ug/L                     | ug/L                    | ug/L                    | ug/L                    | ug/L                     | ug/L                       | ug/L                     | ug/L                   | ug/L                    | ug/L                   | ug/L                    | ug/L                       |
| Volatile Organic Compounds (VOCs                |                                          | ND (2.2)               |                         | ND (2.2)                |                          | ND (2.2)                | ND (2.2)                |                         | 1                        | 455                        |                          |                        | 1                       | ND (2.2)               | 1                       | 40.4                       |
| Acetone<br>Benzene                              | 6000<br>1                                | ND (3.3)<br>ND (0.28)  | -                       | ND (3.3)<br>ND (0.28)   | -                        | ND (3.3)<br>ND (0.28)   | ND (3.3)<br>ND (0.28)   | 6.9 J<br>ND (0.28)      | -                        | 177<br>0.47 J              | -                        | 94.4<br>ND (0.28)      | -                       | ND (3.3)<br>ND (0.28)  | -                       | 13.4<br>0.67               |
| Bromochloromethane                              | -                                        | ND (0.42)              | -                       | ND (0.42)               | -                        | ND (0.42)               | ND (0.42)               | ND (0.42)               | -                        | ND (0.42)                  | -                        | ND (0.42)              | -                       | ND (0.42)              | -                       | ND (0.42)                  |
| Bromodichloromethane                            | 1                                        | ND (0.21)              | -                       | ND (0.21)               | -                        | ND (0.21)               | ND (0.21)               | ND (0.21)               | -                        | ND (0.21)                  | -                        | ND (0.21)              | -                       | ND (0.21)              | -                       | ND (0.21)                  |
| Bromoform                                       | 4                                        | ND (0.30)              | -                       | ND (0.30)               | -                        | ND (0.30)               | ND (0.30)               | ND (0.30)               | -                        | ND (0.30)                  | -                        | ND (0.30)              | -                       | ND (0.30)              | -                       | ND (0.30)                  |
| Bromomethane<br>2-Butanone (MEK)                | 10<br>300                                | ND (0.56)<br>ND (3.2)  | -                       | ND (0.56)<br>ND (3.2)   | -                        | ND (0.56)<br>ND (3.2)   | ND (0.56)<br>ND (3.2)   | ND (0.56)<br>ND (3.2)   | -                        | 0.87 J<br>23.5             | -                        | 2<br>ND (3.2)          | -                       | ND (0.56)<br>ND (3.2)  | -                       | ND (0.56)<br>ND (3.2)      |
| Carbon disulfide                                | 700                                      | ND (0.18)              | -                       | ND (0.18)               | -                        | ND (0.18)               | ND (0.18)               | ND (0.18)               | -                        | 0.59 J                     | -                        | 0.28                   | J -                     | ND (0.18)              | -                       | ND (0.18)                  |
| Carbon tetrachloride                            | 1                                        | ND (0.23)              | -                       | ND (0.23)               | -                        | ND (0.23)               | ND (0.23)               | ND (0.23)               | -                        | 2                          | -                        | ND (0.23)              | -                       | ND (0.23)              | -                       | ND (0.23)                  |
| Chlorobenzene                                   | 50                                       | ND (0.35)              | -                       | ND (0.35)               | -                        | ND (0.35)               | ND (0.35)               | ND (0.35)               | -                        | ND (0.35)                  | -                        | ND (0.35)              | -                       | ND (0.35)              | -                       | ND (0.35)                  |
| Chloroethane<br>Chloroform                      | 70                                       | ND (0.39)<br>ND (0.25) | -                       | ND (0.39)<br>ND (0.25)  | -                        | ND (0.39)<br>ND (0.25)  | ND (0.39)<br>ND (0.25)  | ND (0.39)<br>ND (0.25)  | -                        | ND (0.39)<br><b>4.7</b>    | -                        | ND (0.39)<br>ND (0.25) | -                       | ND (0.39)<br>ND (0.25) | -                       | ND (0.39)<br>ND (0.25)     |
| Chloromethane                                   | -                                        | ND (0.36)              | -                       | ND (0.36)               | -                        | ND (0.36)               | ND (0.36)               | ND (0.36)               | -                        | ND (0.36)                  | -                        | ND (0.36)              | -                       | ND (0.36)              | -                       | ND (0.36)                  |
| Cyclohexane                                     | -                                        | ND (0.18)              | -                       | ND (0.18)               | -                        | ND (0.18)               | ND (0.18)               | ND (0.18)               | -                        | ND (0.18)                  | -                        | ND (0.18)              | -                       | ND (0.18)              | -                       | ND (0.18)                  |
| 1,2-Dibromo-3-chloropropane                     | 0.02                                     | ND (1.3)               | -                       | ND (1.3)                | -                        | ND (1.3)                | ND (1.3)                | ND (1.3)                | -                        | ND (1.3)                   | -                        | ND (1.3)               | -                       | ND (1.3)               | -                       | ND (1.3)                   |
| Dibromochloromethane<br>1,2-Dibromoethane       | 0.03                                     | ND (0.19)<br>ND (0.16) | -                       | ND (0.19)<br>ND (0.16)  | -                        | ND (0.19)<br>ND (0.16)  | ND (0.19)<br>ND (0.16)  | ND (0.19)<br>ND (0.16)  | -                        | ND (0.19)<br>ND (0.16)     | -                        | ND (0.19)<br>ND (0.16) | -                       | ND (0.19)<br>ND (0.16) | -                       | ND (0.19)<br>ND (0.16)     |
| 1,2-Dichlorobenzene                             | 600                                      | ND (0.20)              | -                       | ND (0.20)               |                          | ND (0.20)               | ND (0.20)               | ND (0.20)               | <u>-</u>                 | 0.21 J                     | -                        | ND (0.20)              | -                       | ND (0.20)              | -                       | ND (0.20)                  |
| 1,3-Dichlorobenzene                             | 600                                      | ND (0.31)              | -                       | ND (0.31)               | -                        | ND (0.31)               | ND (0.31)               | ND (0.31)               | -                        | ND (0.31)                  | -                        | ND (0.31)              | -                       | ND (0.31)              | -                       | ND (0.31)                  |
| 1,4-Dichlorobenzene                             | 75                                       | ND (0.30)              | -                       | ND (0.30)               | -                        | ND (0.30)               | ND (0.30)               | ND (0.30)               | -                        | ND (0.30)                  | -                        | ND (0.30)              | -                       | ND (0.30)              | -                       | ND (0.30)                  |
| Dichlorodifluoromethane 1,1-Dichloroethane      | 1000<br>50                               | ND (0.63)<br>ND (0.26) | -                       | ND (0.63)<br>ND (0.26)  | -                        | ND (0.63)<br>ND (0.26)  | ND (0.63)<br>ND (0.26)  | ND (0.63)<br>ND (0.26)  | -                        | ND (0.63)<br>ND (0.26)     | -                        | ND (0.63)<br>ND (0.26) | -                       | ND (0.63)<br>ND (0.26) | -                       | ND (0.63)<br><b>0.45</b> J |
| 1,2-Dichloroethane                              | 2                                        | ND (0.22)              | -                       | ND (0.20)               | -                        | ND (0.20)               | ND (0.22)               | 5.9                     | -                        | 21.3                       | -                        | 0.38                   | J -                     | ND (0.22)              | -                       | 30.9                       |
| 1,1-Dichloroethene                              | 1                                        | ND (0.34)              | -                       | ND (0.34)               | -                        | ND (0.34)               | ND (0.34)               | ND (0.34)               | -                        | ND (0.34)                  | -                        | ND (0.34)              | -                       | ND (0.34)              | -                       | ND (0.34)                  |
| cis-1,2-Dichloroethene                          | 70                                       | ND (0.24)              | -                       | ND (0.24)               | -                        | ND (0.24)               | ND (0.24)               | ND (0.24)               | -                        | ND (0.24)                  | -                        | 39                     | -                       | ND (0.24)              | -                       | 1.8                        |
| trans-1,2-Dichloroethene<br>1,2-Dichloropropane | 100                                      | ND (0.38)<br>ND (0.28) | -                       | ND (0.38)<br>ND (0.28)  | -                        | ND (0.38)<br>ND (0.28)  | ND (0.38)<br>ND (0.28)  | ND (0.38)<br>ND (0.28)  | -                        | ND (0.38)<br>ND (0.28)     | -                        | ND (0.38)<br>ND (0.28) | -                       | ND (0.38)<br>ND (0.28) | -                       | ND (0.38)<br>ND (0.28)     |
| cis-1,3-Dichloropropene                         | -                                        | ND (0.28)              | -                       | ND (0.28)               | -                        | ND (0.28)<br>ND (0.15)  | ND (0.28)<br>ND (0.15)  | ND (0.28)               | -                        | ND (0.28)                  | -                        | ND (0.28)              | -                       | ND (0.28)              | -                       | ND (0.28)                  |
| trans-1,3-Dichloropropene                       | -                                        | ND (0.21)              | -                       | ND (0.21)               | -                        | ND (0.21)               | ND (0.21)               | ND (0.21)               | -                        | ND (0.21)                  | -                        | ND (0.21)              | -                       | ND (0.21)              | -                       | ND (0.21)                  |
| 1,4-Dioxane                                     | -                                        | ND (73)                | -                       | ND (73)                 | -                        | ND (73)                 | ND (73)                 | ND (73)                 | -                        | ND (73)                    | -                        | ND (73)                | -                       | ND (73)                | -                       | ND (73)                    |
| Ethylbenzene<br>Freon 113                       | 700                                      | ND (0.21)<br>ND (0.77) | -                       | ND (0.21)<br>ND (0.77)  | -                        | ND (0.21)<br>ND (0.77)  | ND (0.21)<br>ND (0.77)  | ND (0.21)<br>ND (0.77)  | -                        | ND (0.21)<br>ND (0.77)     | -                        | ND (0.21)<br>ND (0.77) | -                       | ND (0.21)<br>ND (0.77) | -                       | ND (0.21)<br>ND (0.77)     |
| 2-Hexanone                                      | -                                        | ND (0.77)              | -                       | ND (0.77)<br>ND (1.7)   | -                        | ND (0.77)<br>ND (1.7)   | ND (0.77)               | ND (0.77)               | -                        | ND (0.77)                  | -                        | ND (1.7)               | -                       | ND (1.7)               | -                       | ND (0.77)                  |
| Isopropylbenzene                                | 700                                      | ND (0.22)              | -                       | ND (0.22)               | -                        | ND (0.22)               | ND (0.22)               | ND (0.22)               | -                        | ND (0.22)                  | -                        | ND (0.22)              | -                       | ND (0.22)              | -                       | 0.74 J                     |
| Methyl Acetate                                  | 7000                                     | ND (1.5)               | -                       | ND (1.5)                | -                        | ND (1.5)                | ND (1.5)                | ND (1.5)                | -                        | ND (1.5)                   | -                        | ND (1.5)               | -                       | ND (1.5)               | -                       | ND (1.5)                   |
| Methylcyclohexane<br>Methyl Tert Butyl Ether    | 70                                       | ND (0.15)<br>ND (0.29) | -                       | ND (0.15)<br>ND (0.29)  | -                        | ND (0.15)<br>ND (0.29)  | ND (0.15)<br>ND (0.29)  | ND (0.15)<br>ND (0.29)  | -                        | ND (0.15)<br>ND (0.29)     | -                        | ND (0.15)<br>ND (0.29) | -                       | ND (0.15)<br>ND (0.29) | -                       | ND (0.15)<br>ND (0.29)     |
| 4-Methyl-2-pentanone(MIBK)                      | -                                        | ND (1.5)               | -                       | ND (1.5)                | -                        | ND (1.5)                | ND (1.5)                | ND (1.5)                | -                        | ND (1.5)                   | -                        | ND (1.5)               | -                       | ND (1.5)               | -                       | ND (1.5)                   |
| Methylene chloride<br>Styrene                   | 3<br>100                                 | ND (0.86)<br>ND (0.30) | -                       | ND (0.86)<br>ND (0.30)  | -                        | ND (0.86)<br>ND (0.30)  | ND (0.86)<br>ND (0.30)  | ND (0.86)<br>ND (0.30)  | -                        | ND (0.86)<br>ND (0.30)     | -                        | ND (0.86)<br>ND (0.30) | -                       | ND (0.86)<br>ND (0.30) | -                       | ND (0.86)<br>ND (0.30)     |
| 1,1,2,2-Tetrachloroethane                       | 1                                        | ND (0.20)              | -                       | ND (0.30)<br>ND (0.20)  | -                        | ND (0.30)<br>ND (0.20)  | ND (0.20)               | ND (0.20)               | -                        | 50.1                       | -                        | ND (0.30)              | -                       | ND (0.30)              | -                       | ND (0.20)                  |
| Tetrachloroethene                               | 1                                        | ND (0.25)              | -                       | ND (0.25)               | -                        | ND (0.25)               | ND (0.25)               | ND (0.25)               | -                        | 16.6                       | -                        |                        | J -                     | ND (0.25)              | -                       | ND (0.25)                  |
| Toluene<br>1,2,3-Trichlorobenzene               | 600                                      | ND (0.44)<br>ND (0.24) | -                       | ND (0.44)<br>ND (0.24)  | -                        | ND (0.44)<br>ND (0.24)  | ND (0.44)<br>ND (0.24)  | ND (0.44)<br>ND (0.24)  | -                        | ND (0.44)<br>ND (0.24)     | -                        | ND (0.44)<br>ND (0.24) | -                       | ND (0.44)<br>ND (0.24) |                         | ND (0.44)<br>ND (0.24)     |
| 1,2,4-Trichlorobenzene                          | 9                                        | ND (0.22)              | -                       | ND (0.22)               | -                        | ND (0.22)               | ND (0.22)               | ND (0.22)               | -                        | 1.3 J                      | -                        | ND (0.22)              | -                       | ND (0.22)              | -                       | ND (0.22)                  |
| 1,1,1-Trichloroethane<br>1,1,2-Trichloroethane  | 30                                       | ND (0.25)<br>ND (0.21) | -                       | ND (0.25)<br>ND (0.21)  | -                        | ND (0.25)<br>ND (0.21)  | ND (0.25)<br>ND (0.21)  | ND (0.25)<br>ND (0.21)  | -                        | ND (0.25)<br>0.72 J        | -                        | ND (0.25)<br>ND (0.21) | -                       | ND (0.25)<br>ND (0.21) | -                       | 0.54 J<br>ND (0.21)        |
| Trichloroethene                                 | 1                                        | ND (0.21)<br>ND (0.50) | -                       | ND (0.21)               | <u>-</u>                 | ND (0.21)               | ND (0.21)<br>ND (0.50)  | 0.72 J                  | <u>-</u>                 | 60.7                       | -                        | 33.2                   | -                       | ND (0.21)<br>ND (0.50) | -                       | 22.2                       |
| Trichlorofluoromethane                          | 2000                                     | ND (0.33)              | -                       | ND (0.33)               | -                        | ND (0.33)               | ND (0.33)               | ND (0.33)               | -                        | ND (0.33)                  | -                        | ND (0.33)              | -                       | ND (0.33)              | -                       | ND (0.33)                  |
| Vinyl chloride<br>m,p-Xylene                    | - 1                                      | ND (0.41)<br>ND (0.40) | -                       | ND (0.41)<br>ND (0.40)  | -                        | ND (0.41)<br>ND (0.40)  | ND (0.41)<br>ND (0.40)  | ND (0.41)<br>ND (0.40)  | -                        | ND (0.41)<br>ND (0.40)     | -                        | ND (0.41)<br>ND (0.40) | -                       | ND (0.41)<br>ND (0.40) |                         | ND (0.41)<br>ND (0.40)     |
| o-Xylene                                        | -                                        | ND (0.19)              | -                       | ND (0.19)               | -                        | ND (0.19)               | ND (0.19)               | ND (0.19)               | -                        | ND (0.19)                  | -                        | ND (0.19)              | -                       | ND (0.19)              | -                       | 1.1                        |
| Xylene (total)<br>Total VOCs                    | 1000                                     | ND (0.19)<br>0         | -                       | ND (0.19)<br>0          | -                        | ND (0.19)<br>0          | ND (0.19)<br><b>0</b>   | ND (0.19)<br>13.52      | -                        | ND (0.19)<br><b>360.06</b> | -                        | ND (0.19)<br>170.01    | -                       | ND (0.19)<br><b>0</b>  | -                       | 1.1<br>71.8                |
| Total VOCS                                      | -                                        | U                      |                         |                         |                          |                         | · · ·                   | 13.32                   | <u> </u>                 | 300.00                     | <u> </u>                 | 170.01                 |                         | 1 0                    | 1                       | /1.0                       |
| GC/MS Volatile TIC                              |                                          |                        |                         |                         | _                        |                         |                         |                         |                          |                            |                          |                        |                         |                        |                         |                            |
| Total TIC, Volatile<br>Total Alkanes            | -                                        | 0                      | -                       | 0                       | -                        | 0                       | 0                       | 0                       | -                        | 0                          | -                        | 0                      | -                       | 0                      | -                       | 0                          |
| TOTAL AIRCITES                                  | <u> </u>                                 | U                      | <u> </u>                | <u> </u>                |                          | <u> </u>                | · · ·                   | U                       | <u> </u>                 | U                          | <u> </u>                 | U                      |                         |                        |                         | U                          |
| Metals Analysis                                 |                                          |                        |                         |                         |                          |                         |                         |                         |                          |                            |                          |                        |                         |                        |                         |                            |
| Chromium                                        | 70<br>300                                | <10                    | <10<br><100             | <10                     |                          | -                       | -                       | 28.6                    | <10<br><b>236</b>        |                            |                          | 11700                  | 8990<br><100            | <10                    |                         | <10                        |
| Iron<br>Sodium                                  | 300<br>50000                             | <10000                 | <100                    | <10000                  | 1200                     | -                       | -                       | 97000                   | - 236                    |                            | 238                      | <100000                | <100                    | 13400                  | <100                    | 41200                      |
|                                                 |                                          |                        |                         |                         |                          |                         |                         |                         |                          |                            |                          |                        |                         |                        |                         |                            |
| General Chemistry                               | 500000                                   | ×10000                 | ,                       | <10000                  | - 1                      |                         | , , ,                   | 136000                  | - 1                      | 8080000                    | ,                        | 14200000               |                         | 35000                  | ,                       | 241000                     |
| Solids, Total Dissolved<br>Sulfate              | 500000<br>250000                         | <10000<br><10000       | -                       | <10000<br><10000        |                          | -                       |                         | 136000<br>137000        |                          | 8080000<br>2020000         | -                        |                        |                         | 35000<br>36000         |                         | 241000<br>95100            |
|                                                 |                                          |                        |                         |                         |                          | ı                       |                         |                         |                          |                            | 1                        |                        | I.                      |                        | 1                       |                            |

| Sample ID                                  | NJ CLASS IIA        | 1RND1_ISCOMW-5<br>JB66824-16F | 1RND1_DUP01<br>JB66824-18 | 1RND1_DUP01<br>JB66824-18F                       | 1RND1_ISCOMW-6<br>JB66824-17 | 1RND1_ISCOMW-6<br>JB66824-17F | 1RND1_ISCOMW-7<br>JB66824-3 | 1RND1_ISCOMW-7<br>JB66824-3F | 1RND1_ISCOMW-8<br>JB66824-1 | 1RND1_ISCOMW-8<br>JB66824-1F | 1RND1_ISCOMW-9<br>JB66824-13 | 1RND1_ISCOMW-9<br>JB66824-13F | 1RND1_IW1-BT-2<br>JB66824-12 | 1RND1_IW1-BT-2<br>JB66824-12F | 1RND1_MW-10S<br>JB66824-8 | 1RND1_MW-10S<br>JB66824-8F |
|--------------------------------------------|---------------------|-------------------------------|---------------------------|--------------------------------------------------|------------------------------|-------------------------------|-----------------------------|------------------------------|-----------------------------|------------------------------|------------------------------|-------------------------------|------------------------------|-------------------------------|---------------------------|----------------------------|
| Lab Sample ID<br>Sample Date               | GROUNDWATER QUALITY | 5/14/2014                     | 5/14/2014                 | 5/14/2014                                        | 5/14/2014                    | 5/14/2014                     | 5/12/2014                   | 5/12/2014                    | 5/12/2014                   | 5/12/2014                    | 5/13/2014                    | 5/13/2014                     | 5/13/2014                    | 5/13/2014                     | 5/13/2014                 | 5/13/2014                  |
| Matrix                                     |                     | GW-FILTERED                   | GW                        | GW-FILTERED                                      | GW                           | GW-FILTERED                   | GW                          | GW-FILTERED                  | GW                          | GW-FILTERED                  | GW                           | GW-FILTERED                   | GW                           | GW-FILTERED                   | GW                        | GW-FILTERED                |
| Unit                                       |                     | ug/L                          | ug/L                      | ug/L                                             | ug/L                         | ug/L                          | ug/L                        | ug/L                         | ug/L                        | ug/L                         | ug/L                         | ug/L                          | ug/L                         | ug/L                          | ug/L                      | ug/L                       |
| Volatile Organic Compounds (VOCs)          | 6000                | _                             | ND (3.3)                  | 1                                                | ND (3.3)                     |                               | 26.6                        |                              | 26.1                        | ı                            | 36.7                         |                               | 17.5                         | 1                             | ND (2.2)                  |                            |
| Acetone<br>Benzene                         | 6000<br>1           | -                             | 0.66                      | -                                                | ND (3.3)                     | -                             | ND (0.28)                   | -                            | ND (0.28)                   | -                            | ND (0.28)                    | -                             | ND (0.28)                    | -                             | ND (3.3)<br>ND (0.28)     | -                          |
| Bromochloromethane                         | -                   | -                             | ND (0.42)                 | -                                                | ND (0.42)                    | -                             | ND (0.42)                   | -                            | ND (0.42)                   | -                            | ND (0.42)                    | -                             | ND (0.42)                    | -                             | ND (0.42)                 | -                          |
| Bromodichloromethane                       | 1                   | -                             | ND (0.21)                 | -                                                | ND (0.21)                    | -                             | ND (0.21)                   | -                            | ND (0.21)                   | -                            | ND (0.21)                    | -                             | ND (0.21)                    | -                             | ND (0.21)                 | -                          |
| Bromoform                                  | 4                   | -                             | ND (0.30)                 | -                                                | ND (0.30)                    | -                             | ND (0.30)                   | -                            | ND (0.30)                   | -                            | ND (0.30)                    | -                             | ND (0.30)                    | -                             | ND (0.30)                 | -                          |
| Bromomethane<br>2-Butanone (MEK)           | 10<br>300           | -                             | ND (0.56)<br>ND (3.2)     | -                                                | ND (0.56)<br>ND (3.2)        | -                             | ND (0.56)<br>ND (3.2)       | -                            | ND (0.56)<br>ND (3.2)       | -                            | ND (0.56)<br>ND (3.2)        | -                             | 1.1<br>ND (3.2)              | -                             | ND (0.56)<br>ND (3.2)     | -                          |
| Carbon disulfide                           | 700                 | -                             | ND (0.18)                 | -                                                | ND (0.18)                    | -                             | ND (0.18)                   | -                            | 0.32 J                      | -                            | 0.5                          | J -                           |                              | -                             | ND (0.18)                 | -                          |
| Carbon tetrachloride                       | 1                   | -                             | ND (0.23)                 | -                                                | ND (0.23)                    | -                             | 0.81 J                      | -                            | ND (0.23)                   | -                            | ND (0.23)                    | -                             | ND (0.23)                    | -                             | ND (0.23)                 | -                          |
| Chlorobenzene                              | 50                  | -                             | ND (0.35)                 | -                                                | ND (0.35)                    | -                             | ND (0.35)                   | -                            | ND (0.35)                   | -                            | ND (0.35)                    | =,                            | ND (0.35)                    |                               | ND (0.35)                 | =,                         |
| Chloroform                                 | - 70                | -                             | ND (0.39)                 | -                                                | ND (0.39)                    | -                             | ND (0.39)                   | -                            | ND (0.39)                   | -                            | ND (0.39)                    | -                             | ND (0.39)<br>0.38            | -                             | ND (0.39)                 | -                          |
| Chloroform<br>Chloromethane                | 70                  | -                             | ND (0.25)<br>ND (0.36)    | -                                                | ND (0.25)<br>ND (0.36)       | -                             | 1.5<br>ND (0.36)            | -                            | 0.83 J<br>ND (0.36)         | -                            | ND (0.25)<br>ND (0.36)       | -                             |                              |                               | ND (0.25)<br>ND (0.36)    | -                          |
| Cyclohexane                                | -                   | -                             | ND (0.18)                 | <u>-</u>                                         | ND (0.18)                    | -                             | ND (0.18)                   | -                            | ND (0.18)                   | -                            | ND (0.18)                    | -                             | ND (0.18)                    | -                             | ND (0.18)                 | -                          |
| 1,2-Dibromo-3-chloropropane                | 0.02                | -                             | ND (1.3)                  | -                                                | ND (1.3)                     | -                             | ND (1.3)                    | -                            | ND (1.3)                    | -                            | ND (1.3)                     | -                             | ND (1.3)                     | -                             | ND (1.3)                  | -                          |
| Dibromochloromethane                       | 1                   | -                             | ND (0.19)                 | -                                                | ND (0.19)                    | -                             | ND (0.19)                   | -                            | ND (0.19)                   | -                            | ND (0.19)                    | -                             | ND (0.19)                    | -                             | ND (0.19)                 | -                          |
| 1,2-Dibromoethane<br>1,2-Dichlorobenzene   | 0.03<br>600         | -                             | ND (0.16)<br>ND (0.20)    | -                                                | ND (0.16)<br>ND (0.20)       | -                             | ND (0.16)                   | -                            | ND (0.16)                   | -                            | ND (0.16)                    | =                             | ND (0.16)<br>ND (0.20)       | -                             | ND (0.16)<br>ND (0.20)    | -                          |
| 1,2-Dichlorobenzene<br>1,3-Dichlorobenzene | 600                 | -                             | ND (0.20)<br>ND (0.31)    | <del>                                     </del> | ND (0.20)<br>ND (0.31)       | -                             | ND (0.20)<br>ND (0.31)      | -                            | ND (0.20)<br>ND (0.31)      | -                            | ND (0.20)<br>ND (0.31)       | -                             | ND (0.20)<br>ND (0.31)       |                               | ND (0.20)<br>ND (0.31)    | -                          |
| 1,4-Dichlorobenzene                        | 75                  | -                             | ND (0.30)                 | -                                                | ND (0.30)                    | -                             | ND (0.30)                   | -                            | ND (0.30)                   | -                            | ND (0.30)                    | =                             | ND (0.30)                    | =                             | ND (0.30)                 | =                          |
| Dichlorodifluoromethane                    | 1000                | ÷                             | ND (0.63)                 | -                                                | ND (0.63)                    | -                             | ND (0.63)                   | -                            | ND (0.63)                   | -                            | ND (0.63)                    | =                             | ND (0.63)                    | =                             | ND (0.63)                 | =                          |
| 1,1-Dichloroethane                         | 50                  | -                             | 0.48                      | J -                                              | ND (0.26)                    | -                             | ND (0.26)                   | -                            | ND (0.26)                   | -                            | ND (0.26)                    | =                             | ND (0.26)                    | =                             | ND (0.26)                 | =                          |
| 1,2-Dichloroethane<br>1,1-Dichloroethene   | 2                   | -                             | <b>32.2</b><br>ND (0.34)  | -                                                | 2.2<br>ND (0.34)             | -                             | ND (0.22)<br>ND (0.34)      | -                            | 1<br>ND (0.34)              | -                            | ND (0.22)<br>ND (0.34)       | -                             | ND (0.22)<br>ND (0.34)       | -                             | ND (0.22)<br>ND (0.34)    | -                          |
| cis-1,2-Dichloroethene                     | 70                  | -                             | 1.8                       | -                                                | 2.5                          | -                             | ND (0.34)<br>ND (0.24)      | -                            | 0.54 J                      | -                            | 0.91                         | 1 -                           | ND (0.34)                    | -                             | ND (0.34)<br>ND (0.24)    | -                          |
| trans-1,2-Dichloroethene                   | 100                 | -                             | ND (0.38)                 | -                                                | ND (0.38)                    | -                             | ND (0.38)                   | -                            | ND (0.38)                   | -                            | ND (0.38)                    | -                             | ND (0.38)                    | =                             | ND (0.38)                 | =                          |
| 1,2-Dichloropropane                        | 1                   | ÷                             | ND (0.28)                 | -                                                | ND (0.28)                    | -                             | ND (0.28)                   | -                            | ND (0.28)                   | -                            | ND (0.28)                    | =                             | ND (0.28)                    | =                             | ND (0.28)                 | =                          |
| cis-1,3-Dichloropropene                    | -                   | -                             | ND (0.15)                 | -                                                | ND (0.15)                    | -                             | ND (0.15)                   | -                            | ND (0.15)                   | -                            | ND (0.15)                    | -                             | ND (0.15)                    | -                             | ND (0.15)                 | -                          |
| trans-1,3-Dichloropropene<br>1,4-Dioxane   | -                   | -                             | ND (0.21)<br>ND (73)      | -                                                | ND (0.21)<br>ND (73)         | -                             | ND (0.21)<br>ND (73)        | -                            | ND (0.21)<br>ND (73)        | -                            | ND (0.21)<br>ND (73)         | -                             | ND (0.21)<br>ND (73)         | -                             | ND (0.21)<br>ND (73)      | -                          |
| Ethylbenzene                               | 700                 | -                             | ND (73)<br>ND (0.21)      | -                                                | ND (73)<br>ND (0.21)         | -                             | ND (73)<br>ND (0.21)        | -                            | ND (0.21)                   | -                            | ND (73)<br>ND (0.21)         | -                             | ND (73)<br>ND (0.21)         | -                             | ND (73)<br>ND (0.21)      | -                          |
| Freon 113                                  | -                   | -                             | ND (0.77)                 | -                                                | ND (0.77)                    | -                             | ND (0.77)                   | -                            | ND (0.77)                   | -                            | ND (0.77)                    | =                             | ND (0.77)                    | =                             | ND (0.77)                 | =                          |
| 2-Hexanone                                 | -                   | -                             | ND (1.7)                  | -                                                | ND (1.7)                     | -                             | ND (1.7)                    | -                            | ND (1.7)                    | -                            | ND (1.7)                     | -                             | ND (1.7)                     | -                             | ND (1.7)                  | -                          |
| Isopropylbenzene                           | 700                 | -                             | 0.74 .                    | J -                                              | ND (0.22)                    | -                             | ND (0.22)                   | -                            | ND (0.22)                   | -                            | ND (0.22)                    | -                             | ND (0.22)                    | -                             | ND (0.22)                 | -                          |
| Methyl Acetate  Methylcyclohexane          | 7000                | -                             | ND (1.5)<br>ND (0.15)     | -                                                | ND (1.5)<br>ND (0.15)        | -                             | ND (1.5)<br>ND (0.15)       | -                            | ND (1.5)<br>ND (0.15)       | -                            | ND (1.5)<br>ND (0.15)        | -                             | ND (1.5)<br>ND (0.15)        | -                             | ND (1.5)<br>ND (0.15)     | -                          |
| Methyl Tert Butyl Ether                    | 70                  | -                             | ND (0.13)                 | -                                                | ND (0.13)                    | -                             | ND (0.13)<br>ND (0.29)      | -                            | ND (0.13)<br>ND (0.29)      | -                            | ND (0.13)                    | =                             | ND (0.13)                    | =                             | ND (0.13)                 | -                          |
| 4-Methyl-2-pentanone(MIBK)                 | -                   | -                             | ND (1.5)                  | -                                                | ND (1.5)                     | -                             | ND (1.5)                    | -                            | ND (1.5)                    | -                            | ND (1.5)                     | -                             | ND (1.5)                     | -                             | ND (1.5)                  | -                          |
| Methylene chloride<br>Styrene              | 3<br>100            | -                             | ND (0.86)<br>ND (0.30)    | -                                                | ND (0.86)<br>ND (0.30)       | -                             | ND (0.86)<br>ND (0.30)      | -                            | ND (0.86)<br>ND (0.30)      | -                            | ND (0.86)<br>ND (0.30)       | =                             | ND (0.86)<br>ND (0.30)       | =                             | ND (0.86)<br>ND (0.30)    | -                          |
| 1,1,2,2-Tetrachloroethane                  | 1                   | -                             | ND (0.20)                 | -                                                | ND (0.20)                    | -                             | ND (0.20)                   | -                            | ND (0.20)                   | -                            | ND (0.20)                    | =                             | ND (0.20)                    | =                             | ND (0.20)                 | =                          |
| Tetrachloroethene                          | 1                   | -                             | ND (0.25)                 | -                                                | 0.36 J                       | -                             | 0.83 J                      | -                            | 0.63 J                      | -                            | 0.55                         | J -                           | ND (0.25)                    | -                             | ND (0.25)                 | -                          |
| Toluene 1.2.3-Trichlorobenzene             | 600                 | -                             | ND (0.44)<br>ND (0.24)    | + -                                              | ND (0.44)<br>ND (0.24)       | -                             | ND (0.44)<br>ND (0.24)      | -                            | ND (0.44)<br>ND (0.24)      | -                            | ND (0.44)<br>ND (0.24)       | -                             | ND (0.44)<br>ND (0.24)       | -                             | ND (0.44)<br>ND (0.24)    | -                          |
| 1,2,4-Trichlorobenzene                     | 9                   | -                             | ND (0.22)                 | <u> -                                   </u>     | ND (0.22)                    |                               | ND (0.22)                   | -                            | ND (0.22)                   | -                            | ND (0.22)                    | -                             | ND (0.22)                    | <u>-</u>                      | ND (0.22)                 | -                          |
| 1,1,1-Trichloroethane                      | 30                  | -                             | 0.54                      | J -                                              | ND (0.25)                    | -                             | ND (0.25)                   | -                            | ND (0.25)                   | -                            | ND (0.25)                    | -                             | ND (0.25)                    | -                             | ND (0.25)                 | -                          |
| 1,1,2-Trichloroethane<br>Trichloroethene   | 3<br>1              | -                             | ND (0.21)<br>21.9         | -                                                | ND (0.21)<br>6.1             | -                             | ND (0.21)                   | -                            | ND (0.21)<br>2.4            | -                            | ND (0.21)<br>21.1            | =                             | ND (0.21)<br>3.1             | -                             | ND (0.21)<br>ND (0.50)    | -                          |
| Trichlorofluoromethane                     | 2000                |                               | ND (0.33)                 | <u>-</u>                                         | ND (0.33)                    |                               | ND (0.33)                   |                              | ND (0.33)                   |                              | ND (0.33)                    |                               | ND (0.33)                    | <u>-</u>                      | ND (0.33)                 |                            |
| Vinyl chloride                             | 1                   | -                             | ND (0.41)                 | -                                                | ND (0.41)                    | -                             | ND (0.41)                   | -                            | ND (0.41)                   | -                            | ND (0.41)                    | -                             | ND (0.41)                    | -                             | ND (0.41)                 | -                          |
| m,p-Xylene<br>o-Xylene                     | -                   | -                             | ND (0.40)<br>1.2          | <del> </del>                                     | ND (0.40)<br>ND (0.19)       | -                             | ND (0.40)<br>ND (0.19)      | -                            | ND (0.40)<br>ND (0.19)      | -                            | ND (0.40)<br>ND (0.19)       | -                             | ND (0.40)<br>ND (0.19)       | -                             | ND (0.40)<br>ND (0.19)    | -                          |
| Xylene (total)                             | 1000                | -                             | 1.2                       | -                                                | ND (0.19)                    | -                             | ND (0.19)                   | -                            | ND (0.19)                   | -                            | ND (0.19)                    | -                             | ND (0.19)                    | -                             | ND (0.19)                 | -                          |
| Total VOCs                                 | -                   |                               | 59.52                     |                                                  | 11.16                        |                               | 32.74                       |                              | 31.82                       |                              | 59.76                        |                               | 24.52                        |                               | 0                         |                            |
| GC/MS Volatile TIC                         |                     |                               |                           |                                                  |                              |                               |                             |                              |                             |                              |                              |                               |                              |                               |                           |                            |
| Total TIC, Volatile                        | - 1                 | - 1                           | 0                         |                                                  | 0                            | - 1                           | 0                           | - 1                          | 0                           | - 1                          | 0                            | - 1                           | 0                            | - 1                           | 0                         | - 1                        |
| Total Alkanes                              | -                   | -                             | 0                         | -                                                | 0                            | -                             | 0                           | -                            | 0                           | -                            | 0                            | -                             | 0                            | -                             | 0                         | -                          |
| Metals Analysis                            |                     |                               |                           |                                                  |                              |                               |                             |                              |                             |                              |                              |                               |                              |                               |                           |                            |
| Chromium                                   | 70                  | <10                           | <10                       | <10                                              | <10                          | <10                           | 946                         | 1060                         | 5560                        | 6320                         | 538 a                        | 220                           | 863 a                        | 338                           | <10                       | <10                        |
| Iron                                       | 300                 | 101                           | -                         | <100                                             | -                            | <100                          | -                           | 17600                        | -                           | 2360                         | -                            | 6650                          | -                            | 1220                          | -                         | <100                       |
| Sodium                                     | 50000               | -                             | 40600                     | -                                                | 48100                        | -                             | 784000                      | -                            | 2250000                     | -                            | 578000 a                     | =                             | 344000 a                     | -                             | <10000                    | =                          |
| General Chemistry                          |                     |                               |                           |                                                  |                              |                               |                             |                              |                             |                              |                              |                               |                              |                               |                           |                            |
| Solids, Total Dissolved                    | 500000              | -                             | 227000                    | - 1                                              |                              | -                             | 4430000                     | - 1                          | 10900000                    | -                            | 2430000                      | -                             | 1600000                      | -                             |                           | -                          |
| Sulfate                                    | 250000              | -                             | 94100                     | -                                                | 134000                       | -                             | 511000                      | -                            | 2600000                     | -                            | 742000                       | -                             | 518000                       | -                             | 22200                     | -                          |

| Sample ID                                        |                      | 1RND1 MW-14SA          | 1RND1 MW-14SA                                    | 1RND1 MW-14SB          | 1RND1 MW-14SB | 1RND1 PZ-1S            | 1RND1 PZ-1S   | 1RND2 FB 06302014      | 1RND2 FB 06302014 | 1RND2 FB 070120        | 14 1RND2 FB 07012014 | ТВ                     | ТВ                     | 1RND2 ISCO-MW1         | 1RND2 ISCO-MW1 | 1RND2 ISCO-MW2             |
|--------------------------------------------------|----------------------|------------------------|--------------------------------------------------|------------------------|---------------|------------------------|---------------|------------------------|-------------------|------------------------|----------------------|------------------------|------------------------|------------------------|----------------|----------------------------|
| Lab Sample ID                                    | NICIASSIIA           | JB66824-6              | JB66824-6F                                       | JB66824-7              | JB66824-7F    | JB66824-11             | JB66824-11F   | JB70619-6              | JB70619-6F        | JB70619-16             | JB70619-16F          | JB70619-9              | JB70619-17             | JB70619-3              | JB70619-3F     | JB70619-19                 |
| Sample Date                                      | CRITERIA (7/22/2010) | 5/13/2014              | 5/13/2014                                        | 5/13/2014              | 5/13/2014     | 5/13/2014              | 5/13/2014     | 6/30/2014              | 6/30/2014         | 7/1/2014               | 7/1/2014             | 7/1/2014               | 7/1/2014               | 6/30/2014              | 6/30/2014      | 7/1/2014                   |
| Matrix                                           | ug/L                 | GW                     | GW-FILTERED                                      | GW                     | GW-FILTERED   | GW                     | GW-FILTERED   | WATER                  | WATER-FILTERED    | WATER                  | WATER-FILTERED       | WATER                  | WATER                  | GW                     | GW-FILTERED    | GW                         |
| Unit                                             |                      | ug/L                   | ug/L                                             | ug/L                   | ug/L          | ug/L                   | ug/L          | ug/L                   | ug/L              | ug/L                   | ug/L                 | ug/L                   | ug/L                   | ug/L                   | ug/L           | ug/L                       |
| Volatile Organic Compounds (VOCs)                | 5000                 | ND (2.2)               | 1 1                                              | ND (2.2)               | ı             |                        | 1             | l wa (2.5)             | 1                 | ND (2.5)               |                      | ND (2.5)               | ND (2.6)               | ND (2.5)               | 1              | 1 204                      |
| Acetone<br>Benzene                               | 6000                 | ND (3.3)<br>ND (0.28)  | -                                                | ND (3.3)<br>ND (0.28)  | -             | 18.1<br>ND (0.28)      | -             | ND (2.6)<br>ND (0.21)  | -                 | ND (2.6)<br>ND (0.21)  | -                    | ND (2.6)<br>ND (0.21)  | ND (2.6)<br>ND (0.21)  | ND (2.6)<br>ND (0.21)  | -              | 291<br>0.64 J              |
| Bromochloromethane                               | -                    | ND (0.42)              |                                                  | ND (0.42)              | _             | ND (0.42)              | -             | ND (0.49)              | -                 | ND (0.21)              | _                    | ND (0.49)              | ND (0.49)              | ND (0.49)              | -              | ND (1.2)                   |
| Bromodichloromethane                             | 1                    | ND (0.21)              | - 1                                              | ND (0.21)              | -             | ND (0.21)              | -             | ND (0.28)              | -                 | ND (0.28)              | -                    | ND (0.28)              | ND (0.28)              | ND (0.28)              | -              | ND (0.70)                  |
| Bromoform                                        | 4                    | ND (0.30)              | -                                                | ND (0.30)              | -             | ND (0.30)              | -             | ND (0.31)              | -                 | ND (0.31)              | -                    | ND (0.31)              | ND (0.31)              | ND (0.31)              | -              | ND (0.78)                  |
| Bromomethane                                     | 10                   | ND (0.56)              | E                                                | ND (0.56)              | =             | ND (0.56)              | =             | ND (0.39)              | =                 | ND (0.39)              | =                    | ND (0.39)              | ND (0.39)              | ND (0.39)              | =              | 1.4 J                      |
| 2-Butanone (MEK)                                 | 300                  | ND (3.2)               | -                                                | ND (3.2)               | -             | ND (3.2)               | -             | ND (2.5)               | -                 | ND (2.5)               | -                    | 10.2                   | ND (2.5)               | ND (2.5)               | =              | 23.2 J                     |
| Carbon disulfide                                 | 700                  | ND (0.18)              | -                                                | ND (0.18)              | -             | ND (0.18)              | -             | ND (0.50)              | -                 | ND (0.50)              | -                    | ND (0.50)              | ND (0.50)              | ND (0.50)              | -              | 2.4 J                      |
| Carbon tetrachloride Chlorobenzene               | 1<br>50              | ND (0.23)<br>ND (0.35) | -                                                | ND (0.23)<br>ND (0.35) | -             | ND (0.23)<br>ND (0.35) | -             | ND (0.24)<br>ND (0.27) | -                 | ND (0.24)<br>ND (0.27) | -                    | ND (0.24)<br>ND (0.27) | ND (0.24)<br>ND (0.27) | ND (0.24)<br>ND (0.27) | -              | 0.73 J<br>ND (0.68)        |
| Chloroethane                                     | 50                   | ND (0.35)<br>ND (0.39) |                                                  | ND (0.35)<br>ND (0.39) | -             | ND (0.35)<br>ND (0.39) | -             | ND (0.27)<br>ND (0.56) | -                 | ND (0.27)<br>ND (0.56) |                      | ND (0.27)<br>ND (0.56) | ND (0.27)<br>ND (0.56) | ND (0.27)<br>ND (0.56) | -              | ND (0.68)                  |
| Chloroform                                       | 70                   | ND (0.25)              | -                                                | ND (0.25)              | -             | 0.47 J                 | -             | ND (0.20)              | -                 | ND (0.20)              | -                    | ND (0.20)              | ND (0.20)              | ND (0.20)              | -              | 4.1                        |
| Chloromethane                                    | -                    | ND (0.36)              | -                                                | ND (0.36)              | -             | ND (0.36)              | -             | ND (0.33)              | -                 | ND (0.33)              | -                    | ND (0.33)              | ND (0.33)              | ND (0.33)              | -              | ND (0.83)                  |
| Cyclohexane                                      | -                    | ND (0.18)              | -                                                | ND (0.18)              | -             | ND (0.18)              | -             | ND (0.37)              | =                 | ND (0.37)              | -                    | ND (0.37)              | ND (0.37)              | ND (0.37)              | =              | ND (0.93)                  |
| 1,2-Dibromo-3-chloropropane                      | 0.02                 | ND (1.3)               | -                                                | ND (1.3)               | -             | ND (1.3)               |               | ND (1.2)               | -                 | ND (1.2)               |                      | ND (1.2)               | ND (1.2)               | ND (1.2)               |                | ND (2.9)                   |
| Dibromochloromethane                             | 1                    | ND (0.19)              | -                                                | ND (0.19)              | -             | ND (0.19)              | -             | ND (0.25)              | -                 | ND (0.25)              | -                    | ND (0.25)              | ND (0.25)              | ND (0.25)              | -              | ND (0.62)                  |
| 1,2-Dibromoethane                                | 0.03                 | ND (0.16)              | -                                                | ND (0.16)              | -             | ND (0.16)              | =             | ND (0.23)              | =                 | ND (0.23)              | -                    | ND (0.23)              | ND (0.23)              | ND (0.23)              | =              | ND (0.57)                  |
| 1,2-Dichlorobenzene<br>1,3-Dichlorobenzene       | 600<br>600           | ND (0.20)<br>ND (0.31) | <del>                                     </del> | ND (0.20)<br>ND (0.31) | -             | ND (0.20)<br>ND (0.31) | <del>  </del> | ND (0.16)<br>ND (0.26) | -                 | ND (0.16)<br>ND (0.26) |                      | ND (0.16)<br>ND (0.26) | ND (0.16)<br>ND (0.26) | ND (0.16)<br>ND (0.26) | -              | 1.1 J<br>ND (0.64)         |
| 1,4-Dichlorobenzene                              | 75                   | ND (0.31)              | <del>                                     </del> | ND (0.31)              | -             | ND (0.31)              | -             | ND (0.24)              | -                 | ND (0.24)              |                      | ND (0.24)              | ND (0.24)              | ND (0.24)              | -              | ND (0.59)                  |
| Dichlorodifluoromethane                          | 1000                 | ND (0.63)              | =                                                | ND (0.63)              | -             | ND (0.63)              | -             | ND (0.73)              | =                 | ND (0.73)              | -                    | ND (0.73)              | ND (0.73)              | ND (0.73)              | =              | ND (1.8)                   |
| 1,1-Dichloroethane                               | 50                   | ND (0.26)              | -                                                | ND (0.26)              | -             | ND (0.26)              | -             | ND (0.35)              | -                 | ND (0.35)              | -                    | ND (0.35)              | ND (0.35)              | ND (0.35)              | -              | ND (0.87)                  |
| 1,2-Dichloroethane                               | 2                    | ND (0.22)              | -                                                | ND (0.22)              | -             | 3.3                    | -             | ND (0.30)              | -                 | ND (0.30)              | -                    | ND (0.30)              | ND (0.30)              | 2.6                    | -              | 57.8                       |
| 1,1-Dichloroethene                               | 1                    | ND (0.34)              | -                                                | ND (0.34)              | -             | ND (0.34)              | =             | ND (0.50)              | ÷                 | ND (0.50)              | -                    | ND (0.50)              | ND (0.50)              | ND (0.50)              | ÷              | ND (1.2)                   |
| cis-1,2-Dichloroethene                           | 70                   | ND (0.24)              | -                                                | ND (0.24)              | -             | ND (0.24)              | -             | ND (0.33)              | -                 | ND (0.33)              | -                    | ND (0.33)              | ND (0.33)              | ND (0.33)              | -              | ND (0.82)                  |
| trans-1,2-Dichloroethene                         | 100                  | ND (0.38)<br>ND (0.28) | -                                                | ND (0.38)<br>ND (0.28) | -             | ND (0.38)              | -             | ND (0.51)<br>ND (0.43) | -                 | ND (0.51)<br>ND (0.43) | -                    | ND (0.51)<br>ND (0.43) | ND (0.51)<br>ND (0.43) | ND (0.51)<br>ND (0.43) | -              | ND (1.3)<br>ND (1.1)       |
| 1,2-Dichloropropane<br>cis-1,3-Dichloropropene   | 1                    | ND (0.28)<br>ND (0.15) | -                                                | ND (0.28)<br>ND (0.15) | -             | ND (0.28)<br>ND (0.15) | -             | ND (0.43)<br>ND (0.28) | -                 | ND (0.43)<br>ND (0.28) |                      | ND (0.43)<br>ND (0.28) | ND (0.43)<br>ND (0.28) | ND (0.43)<br>ND (0.28) | -              | ND (1.1)<br>ND (0.71)      |
| trans-1,3-Dichloropropene                        | -                    | ND (0.21)              | - 1                                              | ND (0.21)              | -             | ND (0.21)              | -             | ND (0.32)              | _                 | ND (0.32)              | -                    | ND (0.32)              | ND (0.32)              | ND (0.32)              | -              | ND (0.79)                  |
| 1,4-Dioxane                                      | -                    | ND (73)                | -                                                | ND (73)                | -             | ND (73)                | -             | ND (51)                | -                 | ND (51)                | -                    | ND (51)                | ND (51)                | ND (51)                | -              | ND (130)                   |
| Ethylbenzene                                     | 700                  | ND (0.21)              | -                                                | ND (0.21)              | -             | ND (0.21)              | -             | ND (0.40)              | ÷                 | ND (0.40)              | -                    | ND (0.40)              | ND (0.40)              | ND (0.40)              | -              | ND (0.99)                  |
| Freon 113                                        | -                    | ND (0.77)              | -                                                | ND (0.77)              | -             | ND (0.77)              | -             | ND (0.45)              | -                 | ND (0.45)              | -                    | ND (0.45)              | ND (0.45)              | ND (0.45)              | -              | ND (1.1)                   |
| 2-Hexanone                                       | -                    | ND (1.7)               | - +                                              | ND (1.7)               | -             | ND (1.7)               | -             | ND (1.7)               | -                 | ND (1.7)               | -                    | ND (1.7)               | ND (1.7)               | ND (1.7)               | -              | ND (4.3)                   |
| Isopropylbenzene<br>Methyl Acetate               | 700<br>7000          | ND (0.22)<br>ND (1.5)  | -                                                | ND (0.22)<br>ND (1.5)  | -             | ND (0.22)<br>ND (1.5)  | -             | ND (0.26)<br>ND (3.1)  | -                 | ND (0.26)<br>ND (3.1)  | -                    | ND (0.26)<br>ND (3.1)  | ND (0.26)<br>ND (3.1)  | ND (0.26)<br>ND (3.1)  | -              | ND (0.64)<br>ND (7.7)      |
| Methylcyclohexane                                | 7000                 | ND (1.5)<br>ND (0.15)  | -                                                | ND (1.5)               | -             | ND (1.5)               | -             | ND (3.1)               | -                 | ND (3.1)               |                      | ND (5.1)               | ND (3.1)               | ND (3.1)<br>ND (0.22)  | -              | ND (7.7)<br>ND (0.54)      |
| Methyl Tert Butyl Ether                          | 70                   | ND (0.29)              | -                                                | ND (0.29)              | -             | ND (0.29)              | -             | ND (0.26)              | -                 | ND (0.26)              | -                    | ND (0.26)              | ND (0.26)              | ND (0.26)              | -              | ND (0.66)                  |
| 4-Methyl-2-pentanone(MIBK)                       | -                    | ND (1.5)               | -                                                | ND (1.5)               | -             | ND (1.5)               | -             | ND (1.1)               | -                 | ND (1.1)               | -                    | ND (1.1)               | ND (1.1)               | ND (1.1)               | -              | ND (2.6)                   |
| Methylene chloride<br>Styrene                    | 3<br>100             | ND (0.86)<br>ND (0.30) | -                                                | ND (0.86)<br>ND (0.30) | -             | ND (0.86)<br>ND (0.30) | -             | ND (0.81)<br>ND (0.26) | -                 | ND (0.81)<br>ND (0.26) | -                    | ND (0.81)<br>ND (0.26) | ND (0.81)<br>ND (0.26) | ND (0.81)<br>ND (0.26) | -              | ND (2.0)<br>ND (0.64)      |
| 1,1,2,2-Tetrachloroethane                        | 100                  | ND (0.20)              | -                                                | ND (0.30)              | -             | ND (0.30)              | -             | ND (0.39)              | -                 | ND (0.26)              | -                    | ND (0.26)              | ND (0.26)              | ND (0.26)              | -              | 92.4                       |
| Tetrachloroethene                                | 1                    | ND (0.25)              | -                                                | ND (0.25)              | -             | ND (0.25)              | - 1           | ND (0.35)              | -                 | ND (0.35)              | -                    | ND (0.35)              | ND (0.35)              | ND (0.35)              | -              | 7.9                        |
| Toluene                                          | 600                  | ND (0.44)              |                                                  | ND (0.44)              | -             | ND (0.44)              | -             | ND (0.22)              | -                 | ND (0.22)              |                      | ND (0.22)              | ND (0.22)              | ND (0.22)              | -              | ND (0.55)                  |
| 1,2,3-Trichlorobenzene<br>1,2,4-Trichlorobenzene | 9                    | ND (0.24)<br>ND (0.22) | -                                                | ND (0.24)<br>ND (0.22) | -             | ND (0.24)<br>ND (0.22) | -             | ND (0.26)<br>ND (0.22) | -                 | ND (0.26)<br>ND (0.22) | -                    | ND (0.26)<br>ND (0.22) | ND (0.26)<br>ND (0.22) | ND (0.26)<br>ND (0.22) | -              | ND (0.66)<br>ND (0.56)     |
| 1,1,1-Trichloroethane                            | 30                   | ND (0.25)              | -                                                | ND (0.25)              | -             | ND (0.25)              | - 1           | ND (0.32)              | - 1               | ND (0.32)              | - +                  | ND (0.32)              | ND (0.32)              | ND (0.32)              | -              | ND (0.80)                  |
| 1,1,2-Trichloroethane                            | 3                    | ND (0.21)              | -                                                | ND (0.21)              | -             | ND (0.21)              | -             | ND (0.28)              | -                 | ND (0.28)              | -                    | ND (0.28)              | ND (0.28)              | ND (0.28)              | -              | 0.81 J                     |
| Trichloroethene                                  | 1                    | ND (0.50)              | -                                                | ND (0.50)              | -             | 1.4<br>ND (0.33)       | -             | ND (0.25)              | -                 | ND (0.25)              | -                    | ND (0.25)              | ND (0.25)              | ND (0.25)              | -              | 31.3<br>ND (0.70)          |
| Trichlorofluoromethane Vinyl chloride            | 2000                 | ND (0.33)<br>ND (0.41) | <del>                                     </del> | ND (0.33)<br>ND (0.41) | -             | ND (0.33)<br>ND (0.41) |               | ND (0.28)<br>ND (0.17) | -                 | ND (0.28)<br>ND (0.17) |                      | ND (0.28)<br>ND (0.17) | ND (0.28)<br>ND (0.17) | ND (0.28)<br>ND (0.17) | -              | ND (0.70)<br>ND (0.44)     |
| m,p-Xylene                                       | -                    | ND (0.41)              |                                                  | ND (0.40)              |               | ND (0.40)              | -             | ND (0.45)              | -                 | ND (0.45)              | -                    | ND (0.45)              | ND (0.45)              | ND (0.45)              | -              | ND (1.1)                   |
| o-Xylene                                         | -                    | ND (0.19)              | -                                                | ND (0.19)              | -             | ND (0.19)              |               | ND (0.20)              | -                 | ND (0.20)              |                      | ND (0.20)              | ND (0.20)              | ND (0.20)              | -              | ND (0.50)                  |
| Xylene (total)<br>Total VOCs                     | 1000                 | ND (0.19)<br><b>0</b>  | <del>                                     </del> | ND (0.19)<br>0         | -             | ND (0.19)<br>23.27     |               | ND (0.20)<br>0         | -                 | ND (0.20)<br><b>0</b>  | -                    | ND (0.20)<br>10.2      | ND (0.20)<br><b>0</b>  | ND (0.20)<br>2.6       | -              | ND (0.50)<br><b>514.78</b> |
| Total VOC3                                       |                      |                        | <u> </u>                                         |                        | 1             | 23.21                  | 1             |                        |                   |                        |                      | 10.2                   |                        | 2.0                    |                | 314./0                     |
| GC/MS Volatile TIC                               |                      |                        |                                                  |                        |               |                        |               |                        |                   |                        |                      |                        |                        |                        |                |                            |
| Total TIC, Volatile                              | -                    | 0                      | - 1                                              | 0                      | -             | 0                      |               | 0                      |                   |                        | -                    |                        | 0                      |                        | J -            | 0                          |
| Total Alkanes                                    | -                    | 0                      | -                                                | 0                      | -             | 0                      | -             | 0                      | -                 | 0                      | -                    | 0                      | 0                      | 0                      | -              | 0                          |
| Metals Analysis                                  |                      |                        |                                                  |                        |               |                        |               |                        |                   |                        |                      |                        |                        |                        |                |                            |
| Chromium                                         | 70                   | <10                    | <10                                              | <10                    | <10           | 1390 a                 | 418           | <10                    | <10               | <10                    | <10                  | - 1                    | - 1                    | <10                    | <10            | 718                        |
| Iron                                             | 300                  | -                      | <100                                             | -                      |               | -                      | 9150          | -                      | <100              | -                      | <100                 |                        | -                      | -                      | <100           | -                          |
| Sodium                                           | 50000                | 103000                 | -                                                | 93100                  | -             | 482000 a               |               | <10000                 |                   | <10000                 | -                    | -                      |                        | 89300                  |                | 1060000                    |
| General Chemistry                                |                      |                        |                                                  |                        |               |                        |               |                        |                   |                        |                      |                        |                        |                        |                |                            |
| Solids, Total Dissolved                          | 500000               | 677000                 | 1   -                                            | 683000                 | -             | 2730000                | - 1           | <10000                 | -                 | <10000                 |                      |                        | 1 - 1                  | 452000                 | 1 - 1          | 3860000                    |
| Sulfate                                          | 250000               |                        | -                                                | 278000                 |               | 350000                 |               | <10000                 | -                 |                        | -                    | -                      | -                      | 181000                 | -              | 1880000                    |
|                                                  |                      |                        |                                                  |                        |               |                        |               |                        |                   |                        |                      |                        |                        |                        |                | •                          |

| ## 1971 1971 1971 1971 1971 1971 1971 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample ID                         |                      | 1RND2 ISCO-MW2 | 1RND2 ISCO-MW3 | 1RND2 ISCO-MW3 | 1RND2 ISCO-MW4 | 1RND2 ISCO-MW4 | 1RND2 ISCO-MW5                        | 1RND2 ISCO-MW5                                   | 1RND2 ISCO-MW6                        | 1RND2 ISCO-MW6                                 | 1RND2 DUP | 1RND2 DUP      | 1RND2 ISCO-MW7 | 1RND2 ISCO-MW7 | 1RND2 ISCO-MW8         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------|----------------|----------------|----------------|----------------|----------------|---------------------------------------|--------------------------------------------------|---------------------------------------|------------------------------------------------|-----------|----------------|----------------|----------------|------------------------|
| Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | NJ CLASS IIA         |                |                |                |                |                |                                       |                                                  |                                       |                                                |           |                |                |                | JB70619-12             |
| The control of the co |                                   | GROUNDWATER QUALITY  | 7/1/2014       | 7/1/2014       | 7/1/2014       | 6/30/2014      | 6/30/2014      | 6/30/2014                             | 6/30/2014                                        | 7/1/2014                              | 7/1/2014                                       | 7/1/2014  | 7/1/2014       | 6/30/2014      | 6/30/2014      | 7/1/2014               |
| Column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   | CRITERIA (7/22/2010) | GW-FILTERED    | GW             | GW-FILTERED    | GW             | GW-FILTERED    | GW                                    | GW-FILTERED                                      | GW                                    | GW-FILTERED                                    | GW        | GW - FILTERED  | GW             | GW-FILTERED    | GW                     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unit                              | ug/L                 | ug/L           | ug/L           | ug/L           | ug/L           | ug/L           | ug/L                                  | ug/L                                             | ug/L                                  | ug/L                                           | ug/L      | ug/L           | ug/L           | ug/L           | ug/L                   |
| Column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Volatile Organic Compounds (VOCs) |                      |                |                |                |                |                |                                       |                                                  |                                       |                                                |           |                |                |                |                        |
| Company   Comp   | Acetone                           | 6000                 | -              |                | -              | ND (2.6)       | -              |                                       | -                                                |                                       | -                                              |           | -              |                | -              | 36.8                   |
| Secretary   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   | 1                    | -              |                | -              |                | -              |                                       | -                                                |                                       | -                                              |           | -              |                | -              | ND (0.21)              |
| Second   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   | -                    | -              | ` '            | -              |                | -              |                                       | -                                                |                                       | -                                              |           | -              |                | -              | ND (0.49)              |
| March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                      | -              |                | -              | ` '            | -              | · · · · · · · · · · · · · · · · · · · | -                                                | ` '                                   | -                                              | ` '       |                |                | -              | ND (0.28)              |
| Company   12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                      | -              | ` '            | -              | ` '            | -              | (/                                    | =                                                | ` '                                   | -                                              | ` '       | -              |                | -              | ND (0.31)              |
| Something 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                      | -              |                | -              |                | -              | · · · · · · · · · · · · · · · · · · · | -                                                |                                       | -                                              | · · ·     |                |                | -              | ND (0.39)<br>ND (2.5)  |
| Contribution   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                      |                |                | -              |                | -              |                                       | -                                                |                                       | -                                              |           | + -            |                | _              | ND (0.50)              |
| Company   Comp   |                                   |                      | _              | ` '            | _              |                | _              | ` '                                   | _                                                |                                       | _                                              |           | _              | , ,            | 1 -            | 0.35 J                 |
| Control   Cont   |                                   |                      | -              | ` '            | -              | ` '            | -              | ` '                                   | -                                                | ` '                                   | -                                              | · · ·     | - 1            |                |                | ND (0.27)              |
| Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chloroethane                      | -                    | -              | ` '            | -              | ` '            | -              | ` '                                   | -                                                | ` '                                   | -                                              | ` '       | -              | , ,            | -              | ND (0.56)              |
| Company   Comp   | Chloroform                        | 70                   | -              | ND (0.20)      | -              |                | -              | ND (0.20)                             | -                                                | ND (0.20)                             | -                                              |           | -              | 1.6            | -              | 1.4                    |
| March   Marc   | Chloromethane                     | -                    | -              | ND (0.33)      |                | ND (0.33)      | -              | ND (0.33)                             |                                                  | ND (0.33)                             | -                                              | ND (0.33) | -              | ND (0.33)      | -              | ND (0.33)              |
| Manufacturing   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   | -                    | -              |                | -              | ` '            | -              |                                       | -                                                | · · · · · · · · · · · · · · · · · · · | - 1                                            | · · ·     | - 1            |                | -              | ND (0.37)              |
| 30   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                      | -              |                | -              |                |                | <del></del>                           | -                                                | · · · · · · · · · · · · · · · · · · · |                                                |           | 1              |                | -              | ND (1.2)               |
| 13C9-1200-1200-1200-1200-1200-1200-1200-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                      | =              |                | -              |                | -              | · · · · · · · · · · · · · · · · · · · | -                                                |                                       | -                                              | · · ·     |                |                | -              | ND (0.25)              |
| 1300-1500-1500-1500-1500-1500-1500-1500-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                      | -              |                | -              |                | -              |                                       | -                                                |                                       | -                                              |           | + - +          |                | -              | ND (0.23)              |
| Control   Cont   |                                   |                      | =              | ` '            | -              |                | -              |                                       | -                                                |                                       | -                                              |           | + +            |                | -              | ND (0.16)              |
| Content   Cont   |                                   |                      | -              | ` '            | 1              | ` '            | -              | ` '                                   | <del>                                     </del> | ` '                                   | -                                              | ` '       | + - +          | , ,            | -              | ND (0.26)<br>ND (0.24) |
| 10.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                      | -              |                | -              | <del></del>    |                | · · · · · · · · · · · · · · · · · · · | -                                                | · ' '                                 | -                                              | · · ·     | + +            |                | -              | ND (0.24)<br>ND (0.73) |
| Calcalementary   Calc   |                                   |                      | -              | ` '            | -              | ` '            | -              |                                       | -                                                |                                       | _                                              |           | +              | , ,            | -              | ND (0.75)<br>ND (0.35) |
| Continue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                      | -              | ` '            | -              | ` '            | -              |                                       | -                                                | ` '                                   | -                                              | ` '       | -              | , ,            | -              | 0.48 J                 |
| Section   Sect   |                                   |                      | -              | ` '            | -              |                | -              |                                       | -                                                |                                       | -                                              |           | -              |                | -              | ND (0.50)              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cis-1,2-Dichloroethene            | 70                   | -              | 57.2           | -              | ND (0.33)      | -              | 4.3                                   | -                                                | 4.7                                   | -                                              | 4.8       | -              | ND (0.33)      | -              | 0.61 J                 |
| Exp. Continue proper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | trans-1,2-Dichloroethene          | 100                  | =              | 0.57 J         | -              | ND (0.51)      | =              | ND (0.51)                             | =                                                | ND (0.51)                             | =                                              | ND (0.51) | =              | ND (0.51)      | ē.             | ND (0.51)              |
| Trans La Diffusionegone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2-Dichloropropane               | 1                    | -              | ND (0.43)      | -              | ND (0.43)      | -              | ND (0.43)                             | -                                                | ND (0.43)                             | -                                              | ND (0.43) | -              | ND (0.43)      | -              | ND (0.43)              |
| 1.4 Decided   1.5 Decided      |                                   | =                    | -              | ` '            | -              |                | -              | ` '                                   | -                                                |                                       | -                                              |           | -              |                | -              | ND (0.28)              |
| Targetonises   720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /                                 |                      | -              | ` '            | -              | ` '            | -              | · · · · · · · · · · · · · · · · · · · | -                                                | ` '                                   | -                                              | · · ·     | -              |                | -              | ND (0.32)              |
| Fig. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                      | -              |                | -              | ` '            | -              | 1- /                                  | -                                                |                                       | -                                              | · · · · · |                |                | -              | ND (51)                |
| 2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | '                                 | 700                  | -              | ` '            | -              | ` '            | -              |                                       | -                                                | ` '                                   | -                                              | ` '       |                | (/             | -              | ND (0.40)              |
| Manual Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | -                    |                | ` '            | -              | ` '            |                | ` '                                   | -                                                | · · · · · · · · · · · · · · · · · · · | -                                              | ` '       | <del>-</del> - |                | -              | ND (0.45)<br>ND (1.7)  |
| Mode      |                                   | 700                  | _              |                | _              |                | _              |                                       | _                                                |                                       | _                                              |           | _              |                | _              | ND (0.26)              |
| Motiny for short detection of the short of t |                                   |                      | -              |                | -              | <del></del>    | -              |                                       | -                                                | · · · · · · · · · · · · · · · · · · · | -                                              | · · ·     | -              |                |                | ND (3.1)               |
| Steffely 2 pertamen(MISS)   NO (13)   NO (13   | Methylcyclohexane                 | -                    | -              | ND (0.22)      | -              | ND (0.22)      | -              | ND (0.22)                             | -                                                | ND (0.22)                             | -                                              | ND (0.22) | -              | ND (0.22)      | -              | ND (0.22)              |
| Morphisen sharing  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | 70                   | -              |                | -              |                | -              |                                       | -                                                |                                       | -                                              |           | -              |                | -              | ND (0.26)              |
| Syrene   100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   | -                    | -              |                | -              |                | -              |                                       | -                                                |                                       | -                                              |           | -              |                | -              | ND (1.1)               |
| 11.2.2-Tetrathrocethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                      | -              |                | -              |                | -              |                                       | -                                                |                                       | -                                              | · · ·     | +              | 1 /            | -              | ND (0.81)<br>ND (0.26) |
| Transference   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                      | -              |                | -              |                | -              |                                       | -                                                |                                       | -                                              |           | -              |                | -              | ND (0.39)              |
| 12.3 Trichiorobenseme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | 1                    | -              |                | -              | ` '            | -              |                                       | -                                                |                                       | -                                              |           | J -            |                | J -            | 0.58 J                 |
| 1.2.4-Trichrorebenene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | 600                  | -              |                | -              |                | -              |                                       | -                                                |                                       | -                                              |           |                |                | -              | ND (0.22)              |
| 1.1.1-frickhorechane   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | -<br>0               | =              |                | -              | ` '            | -              |                                       | -                                                |                                       | -                                              | · · ·     | + - +          | 1 /            | _              | ND (0.26)<br>ND (0.22) |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                      | -              |                | -              | ` '            | -              |                                       | -                                                | · ' '                                 | -                                              | · · ·     | + +            |                |                | ND (0.22)<br>ND (0.32) |
| Trichforfourcemethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                      | <u>-</u>       |                | -              |                | <u>-</u>       |                                       | <u>-</u>                                         |                                       | <u>-</u>                                       |           |                |                | -              | ND (0.28)              |
| Vary chloride 1 - ND (0.17) -  |                                   |                      | -              |                | -              |                | -              |                                       | -                                                |                                       | -                                              |           | -              |                | -              | 2.9                    |
| Imp-lykene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                      | -              |                | -              |                | -              |                                       |                                                  |                                       | -                                              |           | + - +          |                | -              | ND (0.28)              |
| 0-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   | 1                    | -              |                | -              | ` '            | -              |                                       | -                                                | · ' '                                 | -                                              | · · ·     | +              | 1 /            | -              | ND (0.17)<br>ND (0.45) |
| No   No   No   No   No   No   No   No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | -                    | -              |                | <del>'</del>   |                | -              |                                       | -                                                |                                       | -                                              |           | + +            |                | -              | ND (0.43)              |
| Common   C   | Xylene (total)                    | 1000                 | <u></u>        | ND (0.20)      | <u> </u>       | ND (0.20)      | <u> </u>       | ND (0.20)                             | <u> </u>                                         | ND (0.20)                             | <u> </u>                                       | ND (0.20) | <u> </u>       | ND (0.20)      |                | ND (0.20)              |
| Total TIC, Volatile 0 - 0 - 17 J - 0 - 0 - 0 - 0 - 17 J - 0 - 0 - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total VOCs                        | -                    |                | 150.37         |                | 2.61           |                | 48.25                                 |                                                  | 15.99                                 |                                                | 16.19     |                | 29.76          |                | 43.12                  |
| Total TIC, Volatile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CC/MS Volotile TIC                |                      |                |                |                |                |                |                                       |                                                  |                                       |                                                |           |                |                |                |                        |
| Total Alkanes 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | _                    |                | 1 0 1          | 1              |                | 1 -            | 17 11                                 | 1 -                                              | 1 0                                   | 1 -                                            |           | 1              | 1 0            |                |                        |
| Metals Analysis  Chromium 70 769 4480 5320 13.1 < 10 < 10 27.5 < 10 25.3 < 10 490 473   Iron 300 < 100   -   1800   -   1800   -   1800   -   5760   Sodium 5000 -   211000   -   90000   -   153000   -   50000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -   398000   -     398000   -     398000   -     398000   -     398000   -     398000   -     398000   -     398000   -     398000   -     398000   -     398000   -     398000   -     398000   -                                                                                                                                                                                                                                                                                                               |                                   |                      |                |                |                |                |                |                                       |                                                  |                                       |                                                |           |                |                |                | 0                      |
| Chromium   70   769   4480   5320   13.1   <10   <10   <10   27.5   <10   25.3   <10   490   473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | <u>l</u>             |                | <u> </u>       | 1              | ı              | 1              | . · ·                                 | 1                                                | · · · · · ·                           | <u>,                                      </u> | <u> </u>  | ·              |                | <u> </u>       |                        |
| Iron 300 <100 - <100 - <100 - 186 - <100 - <100 - 5760   Sodium 50000 - 2110000 - 11800 - 22900 - 46200 - 46600 - 598000 -   General Chemistry Solids, Total Dissolved 50000 - 9030000 - 9030000 - 153000 - 50000 - 3880000 - 3880000 - 3880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 5880000 - 588000000 - 5880000 - 5880000000000                                                                                                    | Metals Analysis                   |                      |                |                |                |                |                |                                       |                                                  |                                       |                                                |           |                |                |                |                        |
| Sodium 50000 - 2110000 - 11800 - 12900 - 46200 - 46600 - 598000 - 6  General Chemistry Solids, Total Dissolved 50000 - 9030000 - 9030000 - 153000 - 50000 - 3880000 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                      |                | 4480           |                | 13.1           |                | <10                                   |                                                  | 27.5                                  |                                                | 25.3      |                | 490            |                | 2820                   |
| General Chemistry Solids, Total Dissolved 50000 - 9030000 - 900000 - 153000 - 3980000 - 398000 - 398000 - 398000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 305000 - 3050000 - 305000 - 3050000 - 3050000 - 3050000 - 3050000 - 30500000 - 30500000 - 30500000 - 30500000 - 30500000 - 30500000 - 305000 |                                   |                      |                |                |                |                |                | 20077                                 |                                                  |                                       |                                                |           |                |                |                | -                      |
| Solids, Total Dissolved 500000 - 9030000 - 900000 - 153000 - 50000 - 380000 - 380000 - 380000 - 50000 - 50000 - 50000 - 500000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 500000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 500000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 500000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50 | Soainm                            | 50000                | =              | 2110000        | =              | 11800          | -              | 22900                                 | =                                                | 46200                                 | -                                              | 46600     | 1 - 1          | 598000         | -              | 1760000                |
| Solids, Total Dissolved 500000 - 9030000 - 900000 - 153000 - 50000 - 380000 - 380000 - 380000 - 50000 - 50000 - 50000 - 500000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 500000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 500000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 500000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50 | General Chemistry                 |                      |                |                |                |                |                |                                       |                                                  |                                       |                                                |           |                |                |                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                 | 500000               | - I            | 9030000        | - 1            | 90000          | - 1            | 153000                                | - 1                                              | 50000                                 | - 1                                            | 305000    | 1 - 1          | 3980000        | - 1            | 6010000                |
| Sulfate 250000 - 2450000 - 41100 - 74800 - 145000 - 148000 - 703000 - 703000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sulfate                           | 250000               |                |                | -              | 41100          | -              | 74800                                 | -                                                | 145000                                |                                                | 148000    | - 1            |                | -              | 1910000                |

| Sample ID                                          | NJ CLASS IIA                             | 1RND2_ISCO-MW8<br>JB70619-12F | 1RND2_ISCO-MW9<br>JB70619-7 | 1RND2_ISCO-MW9<br>JB70619-7F | 1RND2_IW2-BT2<br>JB70619-15 | 1RND2_IW2-BT2<br>JB70619-15F | 1RND2_MW-10S<br>JB70619-1 | 1RND2_MW-10S<br>JB70619-1F | 1RND2_MW-14S-D<br>JB70619-13 | 1RND2_MW-14S-D<br>JB70619-13F | 1RND2_MW-14S-S<br>JB70619-14 | 1RND2_MW-14S-S<br>JB70619-14F | 1RND2_PZ-1S<br>JB70619-8 | 1RND2_PZ-1S<br>JB70619-8F | 1RND3_FB _080714<br>JB73631-17 |
|----------------------------------------------------|------------------------------------------|-------------------------------|-----------------------------|------------------------------|-----------------------------|------------------------------|---------------------------|----------------------------|------------------------------|-------------------------------|------------------------------|-------------------------------|--------------------------|---------------------------|--------------------------------|
| Lab Sample ID<br>Sample Date                       | GROUNDWATER QUALITY CRITERIA (7/22/2010) | 7/1/2014                      | 7/1/2014                    | 7/1/2014                     | 7/1/2014                    | 7/1/2014                     | 6/30/2014                 | 6/30/2014                  | 7/1/2014                     | 7/1/2014                      | 7/1/2014                     | 7/1/2014                      | 7/1/2014                 | 7/1/2014                  | 8/7/2014                       |
| Matrix                                             | ug/L                                     | GW-FILTERED                   | GW                          | GW-FILTERED                  | GW                          | GW-FILTERED                  | GW                        | GW-FILTERED                | GW                           | GW-FILTERED                   | GW                           | GW-FILTERED                   | GW                       | GW-FILTERED               | WATER                          |
| Unit Volatile Organic Compounds (VOCs)             |                                          | ug/L                          | ug/L                        | ug/L                         | ug/L                        | ug/L                         | ug/L                      | ug/L                       | ug/L                         | ug/L                          | ug/L                         | ug/L                          | ug/L                     | ug/L                      | ug/L                           |
| Acetone                                            | 6000                                     | -                             | 5.0                         | J -                          | 9.2                         | J -                          | ND (2.6)                  | -                          | ND (2.6)                     | -                             | ND (2.6)                     | -                             | 3.7                      | J -                       | ND (2.6)                       |
| Benzene<br>Bromochloromethane                      | 1                                        | -                             | ND (0.21)<br>ND (0.49)      | -                            | ND (0.21)<br>ND (0.49)      | =                            | ND (0.21)<br>ND (0.49)    | -                          | ND (0.21)<br>ND (0.49)       | -                             | ND (0.21)<br>ND (0.49)       | -                             | ND (0.21)<br>ND (0.49)   | =                         | ND (0.21)<br>ND (0.49)         |
| Bromodichloromethane                               | 1                                        | -                             | ND (0.49)                   | -                            | ND (0.28)                   | =                            | ND (0.28)                 | -                          | ND (0.49)                    | -                             | ND (0.28)                    | -                             | ND (0.28)                | =                         | ND (0.49)                      |
| Bromoform                                          | 4                                        | -                             | ND (0.31)                   | -                            | ND (0.31)                   | -                            | ND (0.31)                 | -                          | ND (0.31)                    | -                             | ND (0.31)                    | -                             | ND (0.31)                | -                         | ND (0.31)                      |
| Bromomethane<br>2-Butanone (MEK)                   | 10<br>300                                | -                             | ND (0.39)<br>ND (2.5)       | -                            | ND (0.39)<br><b>2.8</b>     | -<br>1 -                     | ND (0.39)<br>ND (2.5)     | -                          | ND (0.39)<br>ND (2.5)        | -                             | ND (0.39)<br>ND (2.5)        | -                             | ND (0.39)<br>ND (2.5)    | =                         | ND (0.39)<br>ND (2.5)          |
| Carbon disulfide                                   | 700                                      | -                             | ND (0.50)                   | -                            | ND (0.50)                   | -                            | ND (0.50)                 | -                          | ND (0.50)                    | -                             | ND (0.50)                    | -                             | ND (0.50)                | -                         | ND (0.50)                      |
| Carbon tetrachloride                               | 1                                        | -                             | ND (0.24)                   | -                            | ND (0.24)                   | =                            | ND (0.24)                 | -                          | ND (0.24)                    | -                             | ND (0.24)                    | -                             | ND (0.24)                | =                         | ND (0.24)                      |
| Chlorobenzene<br>Chloroethane                      | 50<br>-                                  | -                             | ND (0.27)<br>ND (0.56)      | -                            | ND (0.27)<br>ND (0.56)      | -                            | ND (0.27)<br>ND (0.56)    | -                          | ND (0.27)<br>ND (0.56)       | -                             | ND (0.27)<br>ND (0.56)       | -                             | ND (0.27)<br>ND (0.56)   | -                         | ND (0.27)<br>ND (0.56)         |
| Chloroform                                         | 70                                       | -                             | ND (0.20)                   | =                            | ND (0.20)                   | =                            | ND (0.20)                 | -                          | ND (0.20)                    | -                             | ND (0.20)                    | =                             | 0.27                     | J -                       | ND (0.20)                      |
| Chloromethane                                      | -                                        | -                             | ND (0.33)                   | -                            | ND (0.33)                   | -                            | ND (0.33)                 | -                          | ND (0.33)                    | -                             | ND (0.33)                    | -                             | ND (0.33)                | -                         | ND (0.33)                      |
| Cyclohexane<br>1,2-Dibromo-3-chloropropane         | 0.02                                     | -                             | ND (0.37)<br>ND (1.2)       | -                            | ND (0.37)<br>ND (1.2)       | -                            | ND (0.37)<br>ND (1.2)     |                            | ND (0.37)<br>ND (1.2)        | -                             | ND (0.37)<br>ND (1.2)        | -                             | ND (0.37)<br>ND (1.2)    | -                         | ND (0.37)<br>ND (1.2)          |
| Dibromochloromethane                               | 1                                        | -                             | ND (0.25)                   | -                            | ND (0.25)                   | -                            | ND (0.25)                 | -                          | ND (0.25)                    | -                             | ND (0.25)                    | -                             | ND (0.25)                | -                         | ND (0.25)                      |
| 1,2-Dibromoethane<br>1,2-Dichlorobenzene           | 0.03<br>600                              | -                             | ND (0.23)<br>ND (0.16)      |                              | ND (0.23)<br>ND (0.16)      | -                            | ND (0.23)<br>ND (0.16)    | -                          | ND (0.23)<br>ND (0.16)       | -                             | ND (0.23)<br>ND (0.16)       | -                             | ND (0.23)<br>ND (0.16)   | -                         | ND (0.23)<br>ND (0.16)         |
| 1,3-Dichlorobenzene                                | 600                                      | -                             | ND (0.16)                   | -                            | ND (0.26)                   | =                            | ND (0.26)                 | -                          | ND (0.16)                    | -                             | ND (0.26)                    | -                             | ND (0.26)                | =                         | ND (0.26)                      |
| 1,4-Dichlorobenzene                                | 75                                       | -                             | ND (0.24)                   | -                            | ND (0.24)                   | -                            | ND (0.24)                 | -                          | ND (0.24)                    | -                             | ND (0.24)                    | -                             | ND (0.24)                | -                         | ND (0.24)                      |
| Dichlorodifluoromethane<br>1,1-Dichloroethane      | 1000<br>50                               | -                             | ND (0.73)<br>ND (0.35)      | -                            | ND (0.73)<br>ND (0.35)      | -                            | ND (0.73)<br>ND (0.35)    | -                          | ND (0.73)<br>ND (0.35)       | -                             | ND (0.73)<br>ND (0.35)       | -                             | ND (0.73)<br>ND (0.35)   | =                         | ND (0.73)<br>ND (0.35)         |
| 1,2-Dichloroethane                                 | 2                                        | -                             | ND (0.30)                   | -                            | ND (0.30)                   | -                            | ND (0.30)                 | -                          | ND (0.30)                    | -                             | ND (0.30)                    | -                             | 3.8                      | -                         | ND (0.30)                      |
| 1,1-Dichloroethene                                 | 1                                        | -                             | ND (0.50)                   | -                            | ND (0.50)                   | =                            | ND (0.50)                 | -                          | ND (0.50)                    | -                             | ND (0.50)                    | -                             | ND (0.50)                | =                         | ND (0.50)                      |
| cis-1,2-Dichloroethene<br>trans-1,2-Dichloroethene | 70<br>100                                | -                             | <b>0.43</b><br>ND (0.51)    | J -                          | 12.9<br>2.2                 | -                            | ND (0.33)<br>ND (0.51)    | -                          | ND (0.33)<br>ND (0.51)       | -                             | ND (0.33)<br>ND (0.51)       | -                             | ND (0.33)<br>ND (0.51)   | -                         | ND (0.33)<br>ND (0.51)         |
| 1,2-Dichloropropane                                | 1                                        | -                             | ND (0.43)                   | -                            | ND (0.43)                   | -                            | ND (0.43)                 | -                          | ND (0.43)                    | -                             | ND (0.43)                    | -                             | ND (0.43)                | -                         | ND (0.43)                      |
| cis-1,3-Dichloropropene                            | -                                        | -                             | ND (0.28)                   | -                            | ND (0.28)                   | =                            | ND (0.28)                 | -                          | ND (0.28)                    | -                             | ND (0.28)                    | =                             | ND (0.28)                | =                         | ND (0.28)                      |
| trans-1,3-Dichloropropene<br>1.4-Dioxane           | -                                        | -                             | ND (0.32)<br>ND (51)        | -                            | ND (0.32)<br>ND (51)        | -                            | ND (0.32)<br>ND (51)      | -                          | ND (0.32)<br>ND (51)         | -                             | ND (0.32)<br>ND (51)         | -                             | ND (0.32)<br>ND (51)     | -                         | ND (0.32)<br>ND (51)           |
| Ethylbenzene                                       | 700                                      | -                             | ND (0.40)                   | -                            | ND (0.40)                   | -                            | ND (0.40)                 | -                          | ND (0.40)                    | -                             | ND (0.40)                    | -                             | ND (0.40)                | -                         | ND (0.40)                      |
| Freon 113                                          | -                                        | -                             | ND (0.45)                   | -                            | ND (0.45)                   | -                            | ND (0.45)<br>ND (1.7)     | -                          | ND (0.45)<br>ND (1.7)        | -                             | ND (0.45)                    | -                             | ND (0.45)<br>ND (1.7)    | -                         | ND (0.45)<br>ND (1.7)          |
| 2-Hexanone<br>Isopropylbenzene                     | 700                                      | -                             | ND (1.7)<br>ND (0.26)       | -                            | ND (1.7)<br>ND (0.26)       | -                            | ND (1.7)<br>ND (0.26)     | -                          | ND (1.7)                     | -                             | ND (1.7)<br>ND (0.26)        | -                             | ND (1.7)<br>ND (0.26)    | -                         | ND (1.7)                       |
| Methyl Acetate                                     | 7000                                     | -                             | ND (3.1)                    | -                            | ND (3.1)                    | -                            | ND (3.1)                  | -                          | ND (3.1)                     | -                             | ND (3.1)                     | -                             | ND (3.1)                 | -                         | ND (3.1)                       |
| Methylcyclohexane<br>Methyl Tert Butyl Ether       | -<br>70                                  | -                             | ND (0.22)<br>ND (0.26)      | -                            | ND (0.22)<br>ND (0.26)      | -                            | ND (0.22)<br>ND (0.26)    | -                          | ND (0.22)<br>ND (0.26)       | -                             | ND (0.22)<br>ND (0.26)       | -                             | ND (0.22)<br>ND (0.26)   | -                         | ND (0.22)<br>ND (0.26)         |
| 4-Methyl-2-pentanone(MIBK)                         | -                                        | -                             | ND (1.1)                    | -                            | ND (1.1)                    | -                            | ND (1.1)                  | -                          | ND (1.1)                     | -                             | ND (1.1)                     | -                             | ND (1.1)                 | -                         | ND (1.1)                       |
| Methylene chloride<br>Styrene                      | 3<br>100                                 | -                             | ND (0.81)<br>ND (0.26)      | -                            | ND (0.81)<br>ND (0.26)      | -                            | ND (0.81)<br>ND (0.26)    | -                          | ND (0.81)<br>ND (0.26)       | -                             | ND (0.81)<br>ND (0.26)       | -                             | ND (0.81)<br>ND (0.26)   | -                         | ND (0.81)<br>ND (0.26)         |
| 1,1,2,2-Tetrachloroethane                          | 1                                        | -                             | ND (0.39)                   | -                            | ND (0.39)                   | -                            | ND (0.39)                 | -                          | ND (0.39)                    | -                             | ND (0.39)                    | -                             | ND (0.39)                | -                         | ND (0.39)                      |
| Tetrachloroethene<br>Toluene                       | 1<br>600                                 | -                             | 0.83<br>ND (0.22)           | J -                          | <b>0.76</b><br>ND (0.22)    | J -                          | ND (0.35)<br>ND (0.22)    | -                          | ND (0.35)<br>ND (0.22)       | -                             | ND (0.35)<br>ND (0.22)       | -                             | ND (0.35)<br>ND (0.22)   | -                         | ND (0.35)<br>ND (0.22)         |
| 1,2,3-Trichlorobenzene                             | -                                        | -                             | ND (0.26)                   | -                            | ND (0.26)                   | -                            | ND (0.26)                 | -                          | ND (0.26)                    | -                             | ND (0.26)                    | -                             | ND (0.26)                | -                         | ND (0.26)                      |
| 1,2,4-Trichlorobenzene<br>1,1,1-Trichloroethane    | 9<br>30                                  | -                             | ND (0.22)<br>ND (0.32)      |                              | ND (0.22)<br>ND (0.32)      |                              | ND (0.22)<br>ND (0.32)    | -                          | ND (0.22)<br>ND (0.32)       | -                             | ND (0.22)<br>ND (0.32)       | -                             | ND (0.22)<br>ND (0.32)   | -                         | ND (0.22)<br>ND (0.32)         |
| 1,1,2-Trichloroethane                              | 3                                        | -                             | ND (0.28)                   | -                            | ND (0.28)                   | -                            | ND (0.28)                 | -                          | ND (0.28)                    | -                             | ND (0.28)                    | -                             | ND (0.28)                | -                         | ND (0.28)                      |
| Trichloroethene<br>Trichlorofluoromethane          | 1<br>2000                                | -                             | 15.8<br>ND (0.28)           |                              | <b>26.8</b><br>ND (0.28)    |                              | ND (0.25)<br>ND (0.28)    | -                          | ND (0.25)<br>ND (0.28)       | -                             | ND (0.25)<br>ND (0.28)       |                               | 1.7<br>ND (0.28)         |                           | ND (0.25)<br>ND (0.28)         |
| Vinyl chloride                                     | 1                                        | -                             | ND (0.17)                   | -                            | ND (0.17)                   | -                            | ND (0.17)                 | -                          | ND (0.17)                    | -                             | ND (0.17)                    | -                             | ND (0.17)                | -                         | ND (0.17)                      |
| m,p-Xylene<br>o-Xylene                             | -                                        | -                             | ND (0.45)<br>ND (0.20)      |                              | ND (0.45)<br>ND (0.20)      | = =                          | ND (0.45)<br>ND (0.20)    | -                          | ND (0.45)<br>ND (0.20)       | -                             | ND (0.45)<br>ND (0.20)       |                               | ND (0.45)<br>ND (0.20)   | -                         | ND (0.45)<br>ND (0.20)         |
| Xylene (total)<br>Total VOCs                       | 1000                                     | -                             | ND (0.20)<br>22.66          | -                            | ND (0.20)<br><b>54.66</b>   | -                            | ND (0.20)<br><b>0</b>     | -                          | ND (0.20)<br>0               | -                             | ND (0.20)<br>0               | -                             | ND (0.20)<br>9.47        | -                         | ND (0.20)<br><b>0</b>          |
|                                                    | <u> </u>                                 |                               | 22.00                       |                              | 54.00                       |                              | U                         | <u> </u>                   |                              |                               | U                            |                               | 5.47                     |                           |                                |
| GC/MS Volatile TIC                                 |                                          |                               |                             | Ţ                            |                             |                              |                           |                            |                              |                               |                              |                               |                          |                           |                                |
| Total TIC, Volatile<br>Total Alkanes               | -                                        | -                             | 0                           | -                            | 0                           | -                            | 0                         | -                          | 0                            | -                             | 0                            | -                             | <b>11</b><br>0           | J -                       | 0                              |
|                                                    |                                          | <u> </u>                      | •                           |                              |                             | •                            | <u> </u>                  |                            |                              |                               |                              | •                             |                          | •                         |                                |
| Metals Analysis Chromium                           | 70                                       | 2900                          | 86.9                        | 18.3                         | 584                         | <10                          | <10                       | <10                        | <10                          | <10                           | <10                          | <10                           | 105                      | 86                        | <10                            |
| Iron                                               | 300                                      | <100                          | -                           | <100                         | -                           | <100                         | -                         | <100                       | -                            | <100                          | -                            | <100                          | -                        | 1880                      | -                              |
| Sodium                                             | 50000                                    | -                             | 147000                      | -                            | 197000                      | -                            | <10000                    | -                          | 125000                       | -                             | 111000                       | -                             | 174000                   | -                         | <10000                         |
| General Chemistry                                  |                                          |                               |                             |                              |                             |                              |                           |                            |                              |                               |                              |                               |                          |                           |                                |
| Solids, Total Dissolved<br>Sulfate                 | 500000<br>250000                         |                               |                             |                              | 1160000<br>465000           |                              | 32000<br>18700            |                            | 731000<br>218000             |                               | 669000<br>195000             |                               | 1040000<br>128000        |                           | <10000<br><10000               |
| Sanate                                             | 250000                                   |                               | 212000                      |                              | 403000                      |                              | 10/00                     | 1                          | 210000                       | 1                             | 193000                       | -                             | 120000                   |                           | 10000                          |

|                                                  | Sample ID                                            | 1RND3_FB_080714 | 1RND3_FB_08081         | 4 1RND3_FB_080814 | ТВ                     | 1RND3 ISCO-MW1         | 1RND3 ISCO-MW1 | 1RND3 ISCO-MW1 ASC 0808 | 14 1RND3 ISCO-MW2          | 1RND3 ISCO-MW2                                   | 1RND3 ISCO-MW2 ASC 08083 | L4 1RND3 ISCO-MW3        | 1RND3 ISCO-MW3      | 1RND3 ISCO-MW4         | 1RND3 ISCO-MW4                                   |
|--------------------------------------------------|------------------------------------------------------|-----------------|------------------------|-------------------|------------------------|------------------------|----------------|-------------------------|----------------------------|--------------------------------------------------|--------------------------|--------------------------|---------------------|------------------------|--------------------------------------------------|
|                                                  | Lah Sample ID                                        | JB73631-17F     | JB73631-16             | JB73631-16F       | JB73631-18             | JB73631-11             | JB73631-11F    | JB73631-20              | JB73631-13                 | JB73631-13F                                      | JB73631-22               | JB73631-6                | JB73631-6F          | JB73631-5              | JB73631-5F                                       |
|                                                  | Sample Date GROUNDWATER QUALITY CRITERIA (7/22/2010) | 8/7/2014        | 8/8/2014               | 8/8/2014          | 8/8/2014               | 8/8/2014               | 8/8/2014       | 8/8/2014                | 8/8/2014                   | 8/8/2014                                         | 8/8/2014                 | 8/7/2014                 | 8/7/2014            | 8/7/2014               | 8/7/2014                                         |
|                                                  | Matrix<br>ug/L                                       | WATER-FILTERED  | WATER                  | WATER-FILTERED    | WATER                  | GW                     | GW-FILTERED    | GW                      | GW                         | GW-FILTERED                                      | GW                       | GW                       | GW-FILTERED         | GW                     | GW-FILTERED                                      |
| Valatila Organia Compounds (V                    | Unit                                                 | ug/L            | ug/L                   | ug/L              | ug/L                   | ug/L                   | ug/L           | ug/L                    | ug/L                       | ug/L                                             | ug/L                     | ug/L                     | ug/L                | ug/L                   | ug/L                                             |
| Volatile Organic Compounds (V                    | 6000                                                 | _               | ND (2.6)               |                   | ND (2.6)               | ND (2.6)               | _              | ND (2.6)                | 375                        |                                                  | 302                      | 47.3                     |                     | ND (2.6)               |                                                  |
| Acetone<br>Benzene                               | 1                                                    | -               | ND (2.6)               | -                 | ND (0.21)              | ND (0.21)              | -              | ND (2.0)<br>ND (0.21)   | 2.3                        | -                                                | 3.4                      | ND (0.21)                | -                   | ND (0.21)              | <del></del>                                      |
| Bromochloromethane                               | =                                                    | -               | ND (0.49)              | -                 | ND (0.49)              | ND (0.49)              | -              | ND (0.49)               | ND (0.49)                  | -                                                | ND (0.49)                | ND (0.49)                | -                   | ND (0.49)              | -                                                |
| Bromodichloromethane                             | 1                                                    | -               | ND (0.28)              | -                 | ND (0.28)              | ND (0.28)              | -              | ND (0.28)               | ND (0.28)                  | -                                                | ND (0.28)                | ND (0.28)                | -                   | ND (0.28)              | -                                                |
| Bromoform                                        | 4                                                    | -               | ND (0.31)              | -                 | ND (0.31)              | ND (0.31)              | -              | ND (0.31)               | ND (0.31)                  | -                                                | ND (0.31)                | ND (0.31)                | -                   | ND (0.31)              | -                                                |
| Bromomethane                                     | 10<br>300                                            | =               | ND (0.39)<br>ND (2.5)  | -                 | ND (0.39)<br>ND (2.5)  | ND (0.39)<br>ND (2.5)  | =              | ND (0.39)<br>ND (2.5)   | 41.2<br>316                | -                                                | 70.8<br>357              | ND (0.39)<br>ND (2.5)    | -                   | ND (0.39)<br>ND (2.5)  | -                                                |
| 2-Butanone (MEK) Carbon disulfide                | 700                                                  | -               | ND (0.50)              | -                 | ND (0.50)              | ND (2.5)<br>ND (0.50)  | -              | ND (2.5)                | 38                         | -                                                | 25.8                     | ND (0.50)                | -                   | ND (0.50)              | <del>-</del>                                     |
| Carbon tetrachloride                             | 1                                                    | -               | ND (0.24)              | -                 | ND (0.24)              | ND (0.24)              | -              | ND (0.24)               | 0.27 J                     | -                                                | ND (0.24)                | ND (0.24)                | -                   | ND (0.24)              | -                                                |
| Chlorobenzene                                    | 50                                                   | -               | ND (0.27)              | -                 | ND (0.27)              | ND (0.27)              | -              | ND (0.27)               | ND (0.27)                  | -                                                | ND (0.27)                | ND (0.27)                | -                   | ND (0.27)              | -                                                |
| Chloroethane                                     | -                                                    | -               | ND (0.56)              | -                 | ND (0.56)              | ND (0.56)              | -              | ND (0.56)               | ND (0.56)                  | -                                                |                          | J ND (0.56)              | -                   | ND (0.56)              | <del>-</del>                                     |
| Chloroform<br>Chloromethane                      | 70                                                   | -               | ND (0.20)<br>ND (0.33) | -                 | ND (0.20)<br>ND (0.33) | ND (0.20)<br>ND (0.33) | -              | ND (0.20)<br>ND (0.33)  | 4.2                        | -                                                | 3.6<br>4.2               | ND (0.20)<br>ND (0.33)   | -                   | ND (0.20)<br>ND (0.33) | -                                                |
| Cyclohexane                                      |                                                      | -               | ND (0.37)              | -                 | ND (0.37)              | ND (0.33)              | -              | ND (0.37)               | ND (0.37)                  | -                                                | ND (0.37)                | ND (0.37)                | -                   | ND (0.37)              | -                                                |
| 1,2-Dibromo-3-chloropropane                      | 0.02                                                 | -               | ND (1.2)               | -                 | ND (1.2)               | ND (1.2)               | -              | ND (1.2)                | ND (1.2)                   | -                                                | ND (1.2)                 | ND (1.2)                 | <u>-</u>            | ND (1.2)               | -                                                |
| Dibromochloromethane                             | 1                                                    | -               | ND (0.25)              | -                 | ND (0.25)              | ND (0.25)              | -              | ND (0.25)               | ND (0.25)                  | -                                                | ND (0.25)                | ND (0.25)                | -                   | ND (0.25)              | -                                                |
| 1,2-Dibromoethane                                | 0.03                                                 | -               | ND (0.23)              | -                 | ND (0.23)              | ND (0.23)              | -              | ND (0.23)               | ND (0.23)                  | -                                                | ND (0.23)                | ND (0.23)                | -                   | ND (0.23)              | <del>-</del>                                     |
| 1,2-Dichlorobenzene 1,3-Dichlorobenzene          | 600<br>600                                           | -               | ND (0.16)<br>ND (0.26) | -                 | ND (0.16)<br>ND (0.26) | ND (0.16)<br>ND (0.26) | -              | ND (0.16)<br>ND (0.26)  | 0.52 J<br>ND (0.26)        | -                                                | 5.1<br>ND (0.26)         | ND (0.16)<br>ND (0.26)   | -                   | ND (0.16)<br>ND (0.26) | -                                                |
| 1,4-Dichlorobenzene                              | 75                                                   | -               | ND (0.24)              | -                 | ND (0.24)              | ND (0.26)<br>ND (0.24) | -              | ND (0.26)<br>ND (0.24)  | ND (0.26)<br>ND (0.24)     | <del>                                     </del> | , ,                      | J ND (0.24)              | <del>-</del> -      | ND (0.24)              | -                                                |
| Dichlorodifluoromethane                          | 1000                                                 | -               | ND (0.73)              | -                 | ND (0.73)              | ND (0.73)              | -              | ND (0.73)               | ND (0.73)                  | <u> </u>                                         | ND (0.73)                | ND (0.73)                |                     | ND (0.73)              | -                                                |
| 1,1-Dichloroethane                               | 50                                                   | =               | ND (0.35)              | -                 | ND (0.35)              | ND (0.35)              | =              | ND (0.35)               | ND (0.35)                  | -                                                | ND (0.35)                | ND (0.35)                | -                   | ND (0.35)              | -                                                |
| 1,2-Dichloroethane                               | 2                                                    | -               | ND (0.30)              | -                 | ND (0.30)              | 2.9                    | -              | 2.7                     | 485                        | -                                                | 554                      | ND (0.30)                | -                   | ND (0.30)              | -                                                |
| 1,1-Dichloroethene<br>cis-1,2-Dichloroethene     | 70                                                   | -               | ND (0.50)<br>ND (0.33) | -                 | ND (0.50)<br>ND (0.33) | ND (0.50)<br>1.1       | -              | ND (0.50)<br>ND (0.33)  | ND (0.50)<br><b>0.63</b> J | -                                                | ND (0.50)<br>0.34        | ND (0.50)<br>J 87.1      | -                   | ND (0.50)<br>ND (0.33) | -                                                |
| trans-1,2-Dichloroethene                         | 100                                                  | -               | ND (0.51)              | -                 | ND (0.51)              | 19.3                   | -              | 15.1                    | ND (0.51)                  | -                                                | ND (0.51)                | 27.1                     | -                   | 30.3                   | <del>                                     </del> |
| 1,2-Dichloropropane                              | 1                                                    | -               | ND (0.43)              | -                 | ND (0.43)              | ND (0.43)              | -              | ND (0.43)               | ND (0.43)                  | -                                                | ND (0.43)                | ND (0.43)                | -                   | ND (0.43)              | -                                                |
| cis-1,3-Dichloropropene                          | -                                                    | =               | ND (0.28)              | -                 | ND (0.28)              | ND (0.28)              | =              | ND (0.28)               | ND (0.28)                  | -                                                | ND (0.28)                | ND (0.28)                | -                   | ND (0.28)              | -                                                |
| trans-1,3-Dichloropropene                        | =                                                    | =               | ND (0.32)              | -                 | ND (0.32)              | ND (0.32)              | =              | ND (0.32)               | ND (0.32)                  | -                                                | ND (0.32)                | ND (0.32)                | -                   | ND (0.32)              | -                                                |
| 1,4-Dioxane                                      | 700                                                  | -               | ND (51)<br>ND (0.40)   | -                 | ND (51)<br>ND (0.40)   | ND (51)<br>ND (0.40)   | -              | ND (51)<br>ND (0.40)    | ND (51)                    | -                                                | ND (51)<br>ND (0.40)     | ND (51)                  | -                   | ND (51)<br>ND (0.40)   | -                                                |
| Ethylbenzene<br>Freon 113                        | 700                                                  | -               | ND (0.45)              | -                 | ND (0.40)<br>ND (0.45) | ND (0.40)<br>ND (0.45) | -              | ND (0.40)<br>ND (0.45)  | ND (0.40)<br>ND (0.45)     | -                                                | ND (0.40)<br>ND (0.45)   | ND (0.40)<br>ND (0.45)   | -                   | ND (0.45)              | -                                                |
| 2-Hexanone                                       | -                                                    | =               | ND (1.7)               | -                 | ND (1.7)               | ND (1.7)               | =              | ND (1.7)                | ND (1.7)                   | -                                                | ND (1.7)                 | ND (1.7)                 | -                   | ND (1.7)               | =                                                |
| Isopropylbenzene                                 | 700                                                  | =               | ND (0.26)              | -                 | ND (0.26)              | ND (0.26)              | =              | ND (0.26)               | ND (0.26)                  | -                                                | ND (0.26)                | ND (0.26)                | -                   | ND (0.26)              | -                                                |
| Methyl Acetate                                   | 7000                                                 | -               | ND (3.1)               | -                 | ND (3.1)               | ND (3.1)               | -              | ND (3.1)                | ND (3.1)                   | -                                                | ND (3.1)                 | ND (3.1)                 | -                   | ND (3.1)               | -                                                |
| Methylcyclohexane<br>Methyl Tert Butyl Ether     | 70                                                   | -               | ND (0.22)<br>ND (0.26) | -                 | ND (0.22)<br>ND (0.26) | ND (0.22)<br>ND (0.26) | -              | ND (0.22)<br>ND (0.26)  | ND (0.22)<br>ND (0.26)     | -                                                | ND (0.22)<br>ND (0.26)   | ND (0.22)<br>ND (0.26)   | -                   | ND (0.22)<br>ND (0.26) | -                                                |
| 4-Methyl-2-pentanone(MIBK)                       | -                                                    | -               | ND (1.1)               | -                 | ND (1.1)               | ND (1.1)               | -              | ND (1.1)                | ND (1.1)                   | -                                                | ND (1.1)                 | ND (1.1)                 | -                   | ND (1.1)               | -                                                |
| Methylene chloride                               | 3                                                    | -               | ND (0.81)              | -                 | ND (0.81)              | ND (0.81)              | -              | ND (0.81)               | 3.4                        | -                                                | 3.3                      | ND (0.81)                | -                   | ND (0.81)              | -                                                |
| Styrene<br>1,1,2,2-Tetrachloroethane             | 100                                                  | -               | ND (0.26)<br>ND (0.39) | -                 | ND (0.26)<br>ND (0.39) | ND (0.26)<br>ND (0.39) | -              | ND (0.26)<br>ND (0.39)  | ND (0.26)<br>17.6          | -                                                | ND (0.26)<br>16.4        | ND (0.26)<br>ND (0.39)   | -                   | ND (0.26)<br>ND (0.39) | -                                                |
| Tetrachloroethene                                | 1                                                    |                 | ND (0.35)              |                   | ND (0.35)              | ND (0.35)              |                | ND (0.35)               | 3.7                        | <u> </u>                                         | 1.6                      | 2                        |                     | ND (0.35)              | -                                                |
| Toluene                                          | 600                                                  | =               | ND (0.22)              | -                 | ND (0.22)              | ND (0.22)              | =              | ND (0.22)               | 0.6 J                      |                                                  | ND (0.22)                | ND (0.22)                | -                   | ND (0.22)              | -                                                |
| 1,2,3-Trichlorobenzene<br>1,2,4-Trichlorobenzene | 9                                                    | -               | ND (0.26)<br>ND (0.22) | -                 | ND (0.26)<br>ND (0.22) | ND (0.26)<br>ND (0.22) | -              | ND (0.26)<br>ND (0.22)  | ND (0.26)<br><b>0.6</b> J  | -                                                | 1.6<br>13.5              | J ND (0.26)<br>ND (0.22) | + -                 | ND (0.26)<br>ND (0.22) | -                                                |
| 1,1,1-Trichloroethane                            | 30                                                   | -               | ND (0.32)              |                   | ND (0.32)              | ND (0.32)              | -              | ND (0.32)               | ND (0.32)                  | -                                                | ND (0.32)                | ND (0.32)                | <u>-</u>            | ND (0.32)              | -                                                |
| 1,1,2-Trichloroethane                            | 3                                                    | -               | ND (0.28)              | -                 | ND (0.28)              | ND (0.28)              | -              | ND (0.28)               | 0.46 J                     | -                                                | ND (0.28)                | ND (0.28)                | -                   | ND (0.28)              |                                                  |
| Trichloroethene<br>Trichlorofluoromethane        | 2000                                                 | -               | ND (0.25)<br>ND (0.28) | -                 | ND (0.25)<br>ND (0.28) | ND (0.25)<br>ND (0.28) | -              | ND (0.25)<br>ND (0.28)  | 16.3<br>ND (0.28)          | <del>  -</del>                                   | 6.5<br>ND (0.28)         | 71.5<br>ND (0.28)        | -                   | 0.64<br>ND (0.28)      | J -                                              |
| Vinyl chloride                                   | 1                                                    |                 | ND (0.17)              |                   | ND (0.17)              | ND (0.17)              |                | ND (0.17)               | ND (0.17)                  | <u> </u>                                         | ND (0.17)                | ND (0.17)                | <u>-</u> -          | ND (0.17)              | -                                                |
| m,p-Xylene                                       | -                                                    | -               | ND (0.45)              | -                 | ND (0.45)              | ND (0.45)              | -              | ND (0.45)               | ND (0.45)                  | -                                                | ND (0.45)                | ND (0.45)                | -                   | ND (0.45)              |                                                  |
| o-Xylene<br>Xylene (total)                       | 1000                                                 | -               | ND (0.20)<br>ND (0.20) | -                 | ND (0.20)<br>ND (0.20) | ND (0.20)<br>ND (0.20) | -              | ND (0.20)<br>ND (0.20)  | ND (0.20)<br>ND (0.20)     | -                                                | ND (0.20)<br>ND (0.20)   | ND (0.20)<br>ND (0.20)   | + -                 | ND (0.20)<br>ND (0.20) | <del></del>                                      |
| Total VOCs                                       | -                                                    |                 | 0                      |                   | 0                      | 23.3                   |                | 17.8                    | 1310.08                    |                                                  |                          | 235                      |                     | 30.94                  |                                                  |
| CO (NAC V. L. III - TIC                          |                                                      |                 |                        |                   |                        |                        |                |                         |                            |                                                  |                          |                          |                     |                        |                                                  |
| GC/MS Volatile TIC Total TIC, Volatile           |                                                      |                 | 0                      | - 1               | 0 1                    | 0                      |                | 0                       | 35.3 J                     |                                                  | 37.7                     | J 19                     | J] - [              | 0                      |                                                  |
| Total Alkanes                                    |                                                      | -               |                        |                   | 0                      | 0                      | -              | 0                       | 0 J                        |                                                  |                          | 0                        |                     |                        | -                                                |
|                                                  |                                                      |                 |                        |                   |                        |                        |                |                         |                            |                                                  | ·                        |                          |                     |                        |                                                  |
| Metals Analysis                                  |                                                      | 150             |                        |                   |                        | 1                      |                |                         | 4000                       | 762                                              | , ·                      | 2000                     | F200                |                        |                                                  |
| Chromium<br>Iron                                 | 70<br>300                                            | <10<br><100     | <10                    | <10<br><100       | -                      | <10                    | <10<br>128     | -                       | 1090                       | <b>762</b> <100                                  | -                        | 3450                     | <b>5280</b><br><100 | <10                    | <10<br><100                                      |
| Sodium                                           | 50000                                                |                 | <10000                 |                   | -                      | 50400                  |                | -                       | 2050000                    |                                                  | -                        | 1110000                  | -                   | 14100                  | -                                                |
|                                                  |                                                      |                 |                        |                   |                        |                        |                |                         |                            |                                                  |                          |                          |                     |                        |                                                  |
| General Chemistry Solids, Total Dissolved        | 500000                                               |                 | <10000                 |                   |                        | 262000                 |                |                         | 4850000                    | 1                                                | 1                        | 5330000                  |                     | 84000                  |                                                  |
| Sulfate                                          | 250000                                               | -               | <10000                 | -                 | -                      |                        | -              | -                       | 2630000                    | -                                                |                          | 1790000                  | -                   | 45000                  | -                                                |
|                                                  | •                                                    |                 |                        |                   | •                      | •                      |                | •                       | •                          |                                                  | •                        |                          |                     | •                      |                                                  |

| Sample ID                                        | NJ CLASS IIA         | 1RND3_ISCO-MW5         | 1RND3_ISCO-MW5          | 1RND3_ISCO-MW5 ASC _080814 |                            | 1RND3_ISCO-MW6         | 1RND3_ISCO-MW7           | 1RND3_ISCO-MW7         | 1RND3-DUP_080714       |                        |                            | 1RND3_ISCO-MW8                                   | 1RND3_ISCO-MW9<br>JB73631-10 | 1RND3_ISCO-MW9<br>JB73631-10F | 1RND3_ISCO-MW9 ASC _080814 |
|--------------------------------------------------|----------------------|------------------------|-------------------------|----------------------------|----------------------------|------------------------|--------------------------|------------------------|------------------------|------------------------|----------------------------|--------------------------------------------------|------------------------------|-------------------------------|----------------------------|
| Lab Sample ID<br>Sample Date                     | GROUNDWATER QUALITY  | JB73631-12<br>8/8/2014 | JB73631-12F<br>8/8/2014 | JB73631-21<br>8/8/2014     | JB73631-1<br>8/7/2014      | JB73631-1F<br>8/7/2014 | JB73631-4<br>8/7/2014    | JB73631-4F<br>8/7/2014 | JB73631-9<br>8/7/2014  | JB73631-9F<br>8/7/2014 | JB73631-2<br>8/7/2014      | JB73631-2F<br>8/7/2014                           | 8/8/2014                     | 8/8/2014                      | JB73631-19<br>8/8/2014     |
| Matrix                                           | CRITERIA (7/22/2010) | GW                     | GW-FILTERED             | GW                         | GW                         | GW-FILTERED            | GW                       | GW-FILTERED            | GW                     | GW-FILTERED            | GW                         | GW-FILTERED                                      | GW                           | GW-FILTERED                   | GW                         |
| Unit                                             | ug/L<br>it           | ug/L                   | ug/L                    | ug/L                       | ug/L                       | ug/L                   | ug/L                     | ug/L                   | ug/L                   | ug/L                   | ug/L                       | ug/L                                             | ug/L                         | ug/L                          | ug/L                       |
| Volatile Organic Compounds (VOCs)                |                      |                        |                         |                            |                            |                        |                          |                        |                        |                        |                            |                                                  |                              |                               |                            |
| Acetone                                          | 6000                 | ND (2.6)               | -                       | ND (2.6)                   | ND (2.6)                   | -                      | 28.4                     | -                      | 29                     | -                      | 39.2                       | -                                                | ND (2.6)                     | -                             | ND (2.6)                   |
| Benzene                                          | 1                    | ND (0.21)              | -                       | ND (0.21)                  | ND (0.21)                  | -                      | ND (0.21)                | -                      | ND (0.21)              | -                      | ND (0.21)                  | -                                                | ND (0.21)                    | -                             | ND (0.21)                  |
| Bromochloromethane<br>Bromodichloromethane       | 1                    | ND (0.49)<br>ND (0.28) | -                       | ND (0.49)<br>ND (0.28)     | ND (0.49)<br>ND (0.28)     | -                      | ND (0.49)<br>ND (0.28)   | -                      | ND (0.49)<br>ND (0.28) | -                      | ND (0.49)<br>ND (0.28)     | -                                                | ND (0.49)<br>ND (0.28)       | -                             | ND (0.49)<br>ND (0.28)     |
| Bromoform                                        | 4                    | ND (0.28)<br>ND (0.31) | -                       | ND (0.28)                  | ND (0.28)<br>ND (0.31)     | -                      | ND (0.28)<br>ND (0.31)   | -                      | ND (0.28)              | -                      | ND (0.28)<br>ND (0.31)     | -                                                | ND (0.28)<br>ND (0.31)       | -                             | ND (0.28)<br>ND (0.31)     |
| Bromomethane                                     | 10                   | ND (0.31)              |                         | ND (0.39)                  | ND (0.31)                  | -                      | 2.1                      | _                      | 2                      | -                      | ND (0.31)                  |                                                  | ND (0.31)                    | _                             | ND (0.39)                  |
| 2-Butanone (MEK)                                 | 300                  | ND (2.5)               | -                       | ND (2.5)                   | ND (2.5)                   | -                      | ND (2.5)                 | -                      | ND (2.5)               | -                      | ND (2.5)                   | -                                                | ND (2.5)                     | -                             | ND (2.5)                   |
| Carbon disulfide                                 | 700                  | ND (0.50)              | -                       | ND (0.50)                  | ND (0.50)                  | -                      | ND (0.50)                | -                      | ND (0.50)              | -                      | ND (0.50)                  | -                                                | ND (0.50)                    | -                             | ND (0.50)                  |
| Carbon tetrachloride                             | 1                    | ND (0.24)              | -                       | ND (0.24)                  | ND (0.24)                  | -                      | 0.63                     | J -                    | 0.68 J                 | -                      | 0.44 J                     | -                                                | ND (0.24)                    | -                             | ND (0.24)                  |
| Chlorobenzene                                    | 50                   | ND (0.27)              | -                       | ND (0.27)                  | ND (0.27)                  | -                      | ND (0.27)                | -                      | ND (0.27)              | -                      | ND (0.27)                  | -                                                | ND (0.27)                    | -                             | ND (0.27)                  |
| Chloroethane                                     | -                    | ND (0.56)              | -                       | ND (0.56)                  | ND (0.56)                  | -                      | ND (0.56)                | -                      | ND (0.56)              | -                      | ND (0.56)                  | -                                                | ND (0.56)                    | -                             | ND (0.56)                  |
| Chloroform                                       | 70                   | ND (0.20)              | -                       | ND (0.20)                  | ND (0.20)                  | -                      | 1.6                      | -                      | 1.6                    | -                      | 1.6                        | -                                                | ND (0.20)                    | -                             | ND (0.20)                  |
| Chloromethane                                    | -                    | ND (0.33)              | -                       | ND (0.33)                  | ND (0.33)                  | -                      | 0.6                      | J -                    | 0.5 J                  | -                      | ND (0.33)                  | -                                                | ND (0.33)                    | -                             | ND (0.33)                  |
| Cyclohexane<br>1,2-Dibromo-3-chloropropane       | 0.02                 | 0.65 J<br>ND (1.2)     | -                       | ND (0.37)<br>ND (1.2)      | ND (0.37)<br>ND (1.2)      | -                      | ND (0.37)<br>ND (1.2)    | -                      | ND (0.37)<br>ND (1.2)  | -                      | ND (0.37)<br>ND (1.2)      | -                                                | ND (0.37)<br>ND (1.2)        | -                             | ND (0.37)<br>ND (1.2)      |
| 1,2-Dibromo-3-chloropropane Dibromochloromethane | 0.02                 | ND (1.2)<br>ND (0.25)  | -                       | ND (1.2)<br>ND (0.25)      | ND (1.2)<br>ND (0.25)      | -                      | ND (1.2)<br>ND (0.25)    | -                      | ND (1.2)<br>ND (0.25)  | -                      | ND (1.2)<br>ND (0.25)      | -                                                | ND (1.2)<br>ND (0.25)        | -                             | ND (1.2)<br>ND (0.25)      |
| 1,2-Dibromoethane                                | 0.03                 | ND (0.23)              | -                       | ND (0.23)                  | ND (0.23)                  | -                      | ND (0.23)                | -                      | ND (0.23)              |                        | ND (0.23)                  |                                                  | ND (0.23)                    | -                             | ND (0.23)                  |
| 1,2-Dichlorobenzene                              | 600                  | ND (0.16)              | -                       | ND (0.16)                  | ND (0.16)                  | -                      | ND (0.16)                | -                      | ND (0.16)              | - 1                    | ND (0.16)                  | -                                                | ND (0.16)                    | -                             | ND (0.16)                  |
| 1,3-Dichlorobenzene                              | 600                  | ND (0.26)              | -                       | ND (0.26)                  | ND (0.26)                  | -                      | ND (0.26)                | -                      | ND (0.26)              | -                      | ND (0.26)                  | -                                                | ND (0.26)                    | ÷                             | ND (0.26)                  |
| 1,4-Dichlorobenzene                              | 75                   | ND (0.24)              | -                       | ND (0.24)                  | ND (0.24)                  | -                      | ND (0.24)                | -                      | ND (0.24)              | -                      | ND (0.24)                  | -                                                | ND (0.24)                    | -                             | ND (0.24)                  |
| Dichlorodifluoromethane                          | 1000                 | ND (0.73)              | -                       | ND (0.73)                  | ND (0.73)                  | -                      | ND (0.73)                | -                      | ND (0.73)              | -                      | ND (0.73)                  | -                                                | ND (0.73)                    | -                             | ND (0.73)                  |
| 1,1-Dichloroethane                               | 50                   | ND (0.35)              | -                       | ND (0.35)                  | ND (0.35)                  | -                      | ND (0.35)                |                        | ND (0.35)              |                        | ND (0.35)                  | -                                                | ND (0.35)                    |                               | ND (0.35)                  |
| 1,2-Dichloroethane                               | 2                    | 1.2                    | -                       | 1                          | 3.4                        | -                      | 2.5                      | -                      | 2.5                    | -                      | ND (0.30)                  | -                                                | ND (0.30)                    | -                             | ND (0.30)                  |
| 1,1-Dichloroethene                               | 1                    | ND (0.50)              | -                       | ND (0.50)                  | ND (0.50)                  | -                      | ND (0.50)                | -                      | ND (0.50)              | -                      | ND (0.50)                  | -                                                | ND (0.50)                    | -                             | ND (0.50)                  |
| cis-1,2-Dichloroethene                           | 70<br>100            | 5.7<br>ND (0.51)       | -                       | 3.1<br>ND (0.51)           | 3.7                        | -                      | 5.9                      | -                      | 6.8                    | -                      | ND (0.33)                  | -                                                | 9.3                          | -                             | ND (0.33)                  |
| trans-1,2-Dichloroethene<br>1,2-Dichloropropane  | 100                  | ND (0.51)<br>ND (0.43) | -                       | ND (0.51)<br>ND (0.43)     | ND (0.51)<br>ND (0.43)     | -                      | 12.3<br>ND (0.43)        | -                      | 11.9<br>ND (0.43)      | -                      | ND (0.51)<br>ND (0.43)     | <del>                                     </del> | 19.9<br>ND (0.43)            | -                             | 29.7<br>ND (0.43)          |
| cis-1,3-Dichloropropene                          | 1                    | ND (0.43)<br>ND (0.28) | -                       | ND (0.28)                  | ND (0.43)<br>ND (0.28)     | -                      | ND (0.43)<br>ND (0.28)   | -                      | ND (0.43)<br>ND (0.28) | -                      | ND (0.43)<br>ND (0.28)     | -                                                | ND (0.43)<br>ND (0.28)       | -                             | ND (0.28)                  |
| trans-1,3-Dichloropropene                        | -                    | ND (0.32)              | -                       | ND (0.32)                  | ND (0.32)                  | -                      | ND (0.32)                | -                      | ND (0.32)              | -                      | ND (0.32)                  | -                                                | ND (0.32)                    | _                             | ND (0.32)                  |
| 1,4-Dioxane                                      | =                    | ND (51)                | -                       | ND (51)                    | ND (51)                    | -                      | ND (51)                  | -                      | ND (51)                | -                      | ND (51)                    | -                                                | ND (51)                      | -                             | ND (51)                    |
| Ethylbenzene                                     | 700                  | ND (0.40)              | -                       | ND (0.40)                  | ND (0.40)                  | -                      | ND (0.40)                | -                      | ND (0.40)              | -                      | ND (0.40)                  | -                                                | ND (0.40)                    | -                             | ND (0.40)                  |
| Freon 113                                        | -                    | ND (0.45)              | -                       | ND (0.45)                  | ND (0.45)                  | -                      | ND (0.45)                | -                      | ND (0.45)              | -                      | ND (0.45)                  | -                                                | ND (0.45)                    | -                             | ND (0.45)                  |
| 2-Hexanone                                       | =                    | ND (1.7)               | ÷                       | ND (1.7)                   | ND (1.7)                   | =                      | ND (1.7)                 | -                      | ND (1.7)               | -                      | ND (1.7)                   | =                                                | ND (1.7)                     | ÷                             | ND (1.7)                   |
| Isopropylbenzene                                 | 700                  | 0.79 J                 | -                       | 0.41 J                     | ND (0.26)                  | -                      | ND (0.26)                | -                      | ND (0.26)              | -                      | ND (0.26)                  | -                                                | ND (0.26)                    | -                             | ND (0.26)                  |
| Methyl Acetate                                   | 7000                 | ND (3.1)<br>ND (0.22)  | -                       | ND (3.1)<br>ND (0.22)      | ND (3.1)<br>ND (0.22)      | -                      | ND (3.1)<br>ND (0.22)    | -                      | ND (3.1)<br>ND (0.22)  | -                      | ND (3.1)<br>ND (0.22)      | -                                                | ND (3.1)<br>ND (0.22)        | -                             | ND (3.1)                   |
| Methylcyclohexane<br>Methyl Tert Butyl Ether     | 70                   | ND (0.22)<br>ND (0.26) | -                       | ND (0.22)<br>ND (0.26)     | ND (0.22)<br>ND (0.26)     | -                      | ND (0.22)<br>ND (0.26)   | -                      | ND (0.22)<br>ND (0.26) | -                      | ND (0.22)<br>ND (0.26)     | -                                                | ND (0.22)<br>ND (0.26)       | -                             | ND (0.22)<br>ND (0.26)     |
| 4-Methyl-2-pentanone(MIBK)                       | -                    | ND (1.1)               | =                       | ND (1.1)                   | ND (1.1)                   | =                      | ND (1.1)                 | -                      | ND (1.1)               | -                      | ND (1.1)                   | -                                                | ND (1.1)                     |                               | ND (1.1)                   |
| Methylene chloride                               | 3                    | ND (0.81)              | -                       | ND (0.81)                  | ND (0.81)                  | -                      | ND (0.81)                | -                      | ND (0.81)              | -                      | ND (0.81)                  | -                                                | ND (0.81)                    | -                             | ND (0.81)                  |
| Styrene                                          | 100                  | ND (0.26)              | -                       | ND (0.26)                  | ND (0.26)                  | -                      | ND (0.26)                | -                      | ND (0.26)              | -                      | ND (0.26)                  | -                                                | ND (0.26)                    | -                             | ND (0.26)                  |
| 1,1,2,2-Tetrachloroethane Tetrachloroethene      | 1                    | ND (0.39)<br>0.4 J     | -                       | ND (0.39)<br>ND (0.35)     | ND (0.39)<br><b>0.41</b> J | -                      | ND (0.39)<br><b>0.66</b> | -                      | ND (0.39)<br>0.62 J    | -                      | ND (0.39)<br><b>0.65</b> J | -                                                | ND (0.39)<br>1               | -                             | ND (0.39)<br>0.75 J        |
| Toluene                                          | 600                  | ND (0.22)              | -                       | ND (0.22)                  | ND (0.22)                  | -                      | ND (0.22)                | -                      | ND (0.22)              | -                      | ND (0.22)                  | -                                                | ND (0.22)                    | -                             | ND (0.22)                  |
| 1,2,3-Trichlorobenzene                           | -                    | ND (0.26)              | -                       | ND (0.26)                  | ND (0.26)                  | -                      | ND (0.26)                | -                      | ND (0.26)              | -                      | ND (0.26)                  | -                                                | ND (0.26)                    | -                             | ND (0.26)                  |
| 1,2,4-Trichlorobenzene                           | 9                    | ND (0.22)              | -                       | ND (0.22)                  | ND (0.22)                  | -                      | ND (0.22)                | -                      | ND (0.22)              | -                      | ND (0.22)                  | -                                                | ND (0.22)                    | -                             | ND (0.22)                  |
| 1,1,1-Trichloroethane<br>1,1,2-Trichloroethane   | 30                   | 1.4<br>ND (0.28)       | -                       | 0.79 J<br>ND (0.28)        | ND (0.32)<br>ND (0.28)     | -                      | ND (0.32)<br>ND (0.28)   | -                      | ND (0.32)<br>ND (0.28) |                        | ND (0.32)<br>ND (0.28)     | -                                                | ND (0.32)<br>ND (0.28)       | -                             | ND (0.32)<br>ND (0.28)     |
| Trichloroethene                                  | 1                    | 18.4                   | -                       | 11.2                       | 5.5                        | -                      | ND (0.28)                | -                      | 2.1                    | -                      | 2.9                        | -                                                | 14.7                         | -                             | 11.3                       |
| Trichlorofluoromethane                           | 2000                 | ND (0.28)              | -                       | ND (0.28)                  | ND (0.28)                  | -                      | ND (0.28)                | -                      | ND (0.28)              | -                      | ND (0.28)                  | -                                                | ND (0.28)                    | -                             | ND (0.28)                  |
| Vinyl chloride                                   | 1                    | ND (0.17)              | -                       | ND (0.17)                  | ND (0.17)                  | -                      | ND (0.17)                | -                      | ND (0.17)              | -                      | ND (0.17)                  | <u> </u>                                         | ND (0.17)                    | -                             | ND (0.17)                  |
| m,p-Xylene<br>o-Xylene                           | -                    | ND (0.45)<br>1.5       | -                       | ND (0.45)<br><b>0.91</b> J | ND (0.45)<br>ND (0.20)     | -                      | ND (0.45)<br>ND (0.20)   | -                      | ND (0.45)<br>ND (0.20) | -                      | ND (0.45)<br>ND (0.20)     | -                                                | ND (0.45)<br>ND (0.20)       | -                             | ND (0.45)<br>ND (0.20)     |
| o-xylene<br>Xylene (total)                       | 1000                 | 1.5                    | -                       | 0.91 J                     | ND (0.20)<br>ND (0.20)     | -                      | ND (0.20)<br>ND (0.20)   | -                      | ND (0.20)<br>ND (0.20) |                        | ND (0.20)<br>ND (0.20)     | -                                                | ND (0.20)<br>ND (0.20)       | -                             | ND (0.20)<br>ND (0.20)     |
| Total VOCs                                       | -                    | 30.04                  |                         | 17.41                      | 13.01                      |                        | 56.69                    |                        | 57.7                   |                        | 44.79                      |                                                  | 44.9                         |                               | 41.75                      |
|                                                  |                      |                        |                         |                            |                            |                        |                          |                        |                        |                        |                            |                                                  |                              |                               |                            |
| GC/MS Volatile TIC                               |                      |                        |                         |                            |                            |                        |                          | Ţ                      |                        |                        |                            |                                                  |                              |                               |                            |
| Total TIC, Volatile<br>Total Alkanes             | -                    | 5.5 J                  | -                       | 0                          | 0                          | -                      | 0                        | -                      | 0                      | -                      | 0                          | -                                                | 0                            | -                             | 0                          |
| rotar ARMIES                                     | -                    | U                      | -                       | U                          | U                          | -                      | U                        | -                      | U                      | - 1                    | U                          | -                                                | U                            | -                             | U                          |
| Metals Analysis                                  |                      |                        |                         |                            |                            |                        |                          |                        |                        |                        |                            |                                                  |                              |                               |                            |
| Chromium                                         | 70                   | <10                    | <10                     | -                          | <10                        | <10                    | 275                      |                        | 294                    |                        | 1950                       | 2020                                             | 142                          | <10                           | -                          |
| Iron                                             | 300                  | -                      | 393                     | -                          | -                          | <100                   | -                        | 3180                   | -                      | 5550                   | -                          | 928                                              | -                            |                               | -                          |
| Sodium                                           | 50000                | 22800                  | -                       | -                          | 62700                      | -                      | 464000                   | -                      | 505000                 | -                      | 1330000                    | -                                                | 53600                        | -                             | -                          |
| General Chemistry                                |                      |                        |                         |                            |                            |                        |                          |                        |                        |                        |                            |                                                  |                              |                               |                            |
| Solids, Total Dissolved                          | 500000               | 105000                 | - 1                     | -                          | 360000                     | -                      | 746000                   | - 1                    | 3720000                |                        | 5460000                    |                                                  | 111000                       | -                             | <u> </u>                   |
| Sulfate                                          | 250000               | 62100                  | -                       | -                          |                            | -                      |                          |                        | 718000                 | -                      | 1420000                    |                                                  | 137000                       |                               | -                          |
|                                                  |                      |                        |                         |                            |                            |                        |                          |                        |                        |                        |                            |                                                  |                              |                               |                            |

| Sample II                                       | D                      | 1RND3 IW1-BT2 080714   | 1 1RND3_IW1-BT2_08071 | 4 1RND3 MW-10S 0807    | 714 1RND3 MW-10S 08071                           | 4 1RND3_MW-14SD_080814 | 1 1RND3 MW-14SD 080814 | 4 1RND3 MW-14SS 0808   | 14 1RND3 MW-14SS 0808 | 314 1RND3_PZ-1S        | 1RND3_PZ-1S       | IRND4_FB _09102014     | 1 IRND4_FB _09102014 | IRND4_FB _09112014     | 4 IRND4_FB_09112014                              | IRND4_TB                                         |
|-------------------------------------------------|------------------------|------------------------|-----------------------|------------------------|--------------------------------------------------|------------------------|------------------------|------------------------|-----------------------|------------------------|-------------------|------------------------|----------------------|------------------------|--------------------------------------------------|--------------------------------------------------|
| Lab Sample II                                   |                        | JB73631-3              | JB73631-3F            | JB73631-8              | JB73631-8F                                       | JB73631-15             | JB73631-15F            | JB73631-14             | JB73631-14F           | JB73631-7              | JB73631-7F        | JB76271-11             | JB76271-11F          | JB76271-21             | JB76271-21F                                      | JB76271-12                                       |
| Sample Dat                                      | e CRITERIA (7/22/2010) | 8/7/2014               | 8/7/2014              | 8/7/2014               | 8/7/2014                                         | 8/8/2014               | 8/8/2014               | 8/8/2014               | 8/8/2014              | 8/7/2014               | 8/7/2014          | 9/10/2014              | 9/10/2014            | 9/11/2014              | 9/11/2014                                        | 9/11/2014                                        |
| Matri                                           | x ug/L                 | GW                     | GW-FILTERED           | GW                     | GW-FILTERED                                      | GW                     | GW-FILTERED            | GW                     | GW-FILTERED           | GW                     | GW-FILTERED       | WATER                  | WATER-FILTERED       | WATER                  | WATER-FILTERED                                   | WATER                                            |
| Uni Volatile Organic Compounds (VOCs)           | it                     | ug/L                   | ug/L                  | ug/L                   | ug/L                                             | ug/L                   | ug/L                   | ug/L                   | ug/L                  | ug/L                   | ug/L              | ug/L                   | ug/L                 | ug/L                   | ug/L                                             | ug/L                                             |
| Acetone                                         | 6000                   | 10.3                   |                       | ND (2.6)               |                                                  | ND (2.6)               |                        | ND (2.6)               | _                     | ND (2.6)               | 1 - 1             | ND (2.6)               |                      | ND (2.6)               | 1 - 1                                            | ND (2.6)                                         |
| Benzene                                         | 1                      | ND (0.21)              | -                     | ND (0.21)              | -                                                | ND (0.21)              | -                      | ND (0.21)              | -                     | ND (0.21)              | -                 | ND (0.21)              | -                    | ND (0.21)              | -                                                | ND (0.21)                                        |
| Bromochloromethane                              | -                      | ND (0.49)              | -                     | ND (0.49)              | -                                                | ND (0.49)              | -                      | ND (0.49)              | -                     | ND (0.49)              | -                 | ND (0.49)              | -                    | ND (0.49)              | -                                                | ND (0.49)                                        |
| Bromodichloromethane                            | 1                      | ND (0.28)              | -                     | ND (0.28)              | -                                                | ND (0.28)              | -                      | ND (0.28)              | -                     | ND (0.28)              | -                 | ND (0.28)              | -                    | ND (0.28)              | -                                                | ND (0.28)                                        |
| Bromoform                                       | 4                      | ND (0.31)              | -                     | ND (0.31)              | -                                                | ND (0.31)              | -                      | ND (0.31)              | =                     | ND (0.31)              | -                 | ND (0.31)              | ÷                    | ND (0.31)              | -                                                | ND (0.31)                                        |
| Bromomethane                                    | 10                     | ND (0.39)              | -                     | ND (0.39)              | -                                                | ND (0.39)              | -                      | ND (0.39)              | -                     | ND (0.39)              | -                 | ND (0.39)              | -                    | ND (0.39)              | -                                                | ND (0.39)                                        |
| 2-Butanone (MEK)                                | 300                    | ND (2.5)               | -                     | ND (2.5)               | -                                                | ND (2.5)               | -                      | ND (2.5)               | -                     | ND (2.5)               | -                 | ND (2.5)               | -                    | ND (2.5)               | -                                                | ND (2.5)                                         |
| Carbon disulfide<br>Carbon tetrachloride        | 700                    | ND (0.50)<br>ND (0.24) | -                     | ND (0.50)<br>ND (0.24) | -                                                | ND (0.50)<br>ND (0.24) | -                      | ND (0.50)<br>ND (0.24) | -                     | ND (0.50)<br>ND (0.24) | -                 | ND (0.50)<br>ND (0.24) | -                    | ND (0.50)<br>ND (0.24) | -                                                | ND (0.50)<br>ND (0.24)                           |
| Chlorobenzene                                   | 50                     | ND (0.24)<br>ND (0.27) | -                     | ND (0.24)              | -                                                | ND (0.24)              | -                      | ND (0.24)              | -                     | ND (0.24)              | -                 | ND (0.24)              | -                    | ND (0.24)              | -                                                | ND (0.24)                                        |
| Chloroethane                                    | -                      | ND (0.56)              | -                     | ND (0.56)              | -                                                | ND (0.56)              | _                      | ND (0.56)              | -                     | ND (0.56)              | -                 | ND (0.56)              | -                    | ND (0.56)              | -                                                | ND (0.56)                                        |
| Chloroform                                      | 70                     | ND (0.20)              | -                     | ND (0.20)              | -                                                | ND (0.20)              | -                      | ND (0.20)              | -                     | ND (0.20)              | -                 | 1.9                    | -                    | 3.9                    | -                                                | ND (0.20)                                        |
| Chloromethane                                   | =                      | ND (0.33)              | -                     | ND (0.33)              | -                                                | ND (0.33)              | -                      | ND (0.33)              | =                     | ND (0.33)              | =                 | ND (0.33)              | =                    | ND (0.33)              | -                                                | ND (0.33)                                        |
| Cyclohexane                                     | -                      | ND (0.37)              | -                     | ND (0.37)              | -                                                | ND (0.37)              | -                      | ND (0.37)              | -                     | ND (0.37)              | -                 | ND (0.37)              | -                    | ND (0.37)              |                                                  | ND (0.37)                                        |
| 1,2-Dibromo-3-chloropropane                     | 0.02                   | ND (1.2)               | -                     | ND (1.2)               | -                                                | ND (1.2)               | -                      | ND (1.2)               | -                     | ND (1.2)               | -                 | ND (1.2)               | -                    | ND (1.2)               | -                                                | ND (1.2)                                         |
| Dibromochloromethane                            | 1                      | ND (0.25)              | -                     | ND (0.25)              | -                                                | ND (0.25)              | -                      | ND (0.25)              | -                     | ND (0.25)              | -                 | ND (0.25)              | -                    | ND (0.25)              |                                                  | ND (0.25)                                        |
| 1,2-Dibromoethane<br>1,2-Dichlorobenzene        | 0.03<br>600            | ND (0.23)<br>ND (0.16) | -                     | ND (0.23)<br>ND (0.16) | -                                                | ND (0.23)<br>ND (0.16) |                        | ND (0.23)<br>ND (0.16) | -                     | ND (0.23)<br>ND (0.16) | -                 | ND (0.23)<br>ND (0.16) | -                    | ND (0.23)<br>ND (0.16) | 1                                                | ND (0.23)<br>ND (0.16)                           |
| 1,3-Dichlorobenzene 1,3-Dichlorobenzene         | 600                    | ND (0.16)<br>ND (0.26) | -                     | ND (0.16)<br>ND (0.26) | <del>                                     </del> | ND (0.16)<br>ND (0.26) |                        | ND (0.16)<br>ND (0.26) | -                     | ND (0.16)<br>ND (0.26) | +                 | ND (0.16)<br>ND (0.26) | -                    | ND (0.16)<br>ND (0.26) | <del>                                     </del> | ND (0.16)<br>ND (0.26)                           |
| 1,4-Dichlorobenzene                             | 75                     | ND (0.24)              | -                     | ND (0.24)              | -                                                | ND (0.24)              | - 1                    | ND (0.24)              | -                     | ND (0.24)              | -                 | ND (0.24)              | -                    | ND (0.24)              | - 1                                              | ND (0.24)                                        |
| Dichlorodifluoromethane                         | 1000                   | ND (0.73)              | -                     | ND (0.73)              | -                                                | ND (0.73)              | -                      | ND (0.73)              | -                     | ND (0.73)              | -                 | ND (0.73)              | -                    | ND (0.73)              | - 1                                              | ND (0.73)                                        |
| 1,1-Dichloroethane                              | 50                     | ND (0.35)              | -                     | ND (0.35)              | -                                                | ND (0.35)              | -                      | ND (0.35)              | -                     | ND (0.35)              | -                 | ND (0.35)              | -                    | ND (0.35)              | -                                                | ND (0.35)                                        |
| 1,2-Dichloroethane                              | 2                      | ND (0.30)              | -                     | 0.54                   | J -                                              | ND (0.30)              | -                      | ND (0.30)              | -                     | ND (0.30)              | -                 | ND (0.30)              | -                    | ND (0.30)              | -                                                | ND (0.30)                                        |
| 1,1-Dichloroethene                              | 1                      | ND (0.50)              | -                     | ND (0.50)              | -                                                | ND (0.50)              | -                      | ND (0.50)              | -                     | ND (0.50)              | -                 | ND (0.50)              | -                    | ND (0.50)              | -                                                | ND (0.50)                                        |
| cis-1,2-Dichloroethene                          | 70                     | 9.6                    | -                     | 1.6                    | -                                                | ND (0.33)              | -                      | ND (0.33)              | -                     | 0.52                   | J -               | ND (0.33)              | -                    | ND (0.33)              | -                                                | ND (0.33)                                        |
| trans-1,2-Dichloroethene                        | 100                    | 1.3                    | -                     | 10.9<br>ND (0.43)      | -                                                | 13.5<br>ND (0.43)      | -                      | 11.6<br>ND (0.43)      | -                     | ND (0.51)<br>ND (0.43) | -                 | ND (0.51)              | -                    | ND (0.51)              | -                                                | ND (0.51)<br>ND (0.43)                           |
| 1,2-Dichloropropane<br>cis-1,3-Dichloropropene  | 1                      | ND (0.43)<br>ND (0.28) | -                     | ND (0.43)<br>ND (0.28) | -                                                | ND (0.43)<br>ND (0.28) | -                      | ND (0.43)<br>ND (0.28) | -                     | ND (0.43)<br>ND (0.28) | -                 | ND (0.43)<br>ND (0.28) | -                    | ND (0.43)<br>ND (0.28) | -                                                | ND (0.43)<br>ND (0.28)                           |
| trans-1,3-Dichloropropene                       | -                      | ND (0.32)              | -                     | ND (0.32)              | _                                                | ND (0.32)              | _                      | ND (0.32)              | _                     | ND (0.32)              | -                 | ND (0.32)              | -                    | ND (0.32)              | -                                                | ND (0.32)                                        |
| 1,4-Dioxane                                     | -                      | ND (51)                | -                     | ND (51)                | -                                                | ND (51)                | -                      | ND (51)                | -                     | ND (51)                | -                 | ND (51)                | -                    | ND (51)                | -                                                | ND (51)                                          |
| Ethylbenzene                                    | 700                    | ND (0.40)              | -                     | ND (0.40)              | -                                                | ND (0.40)              | -                      | ND (0.40)              | -                     | ND (0.40)              | -                 | ND (0.40)              | -                    | ND (0.40)              | -                                                | ND (0.40)                                        |
| Freon 113                                       | -                      | ND (0.45)              | -                     | ND (0.45)              | -                                                | ND (0.45)              | -                      | ND (0.45)              | -                     | ND (0.45)              | -                 | ND (0.45)              | -                    | ND (0.45)              | -                                                | ND (0.45)                                        |
| 2-Hexanone                                      | -                      | ND (1.7)               | -                     | ND (1.7)               | -                                                | ND (1.7)               | -                      | ND (1.7)               | -                     | ND (1.7)               | -                 | ND (1.7)               | -                    | ND (1.7)               | -                                                | ND (1.7)                                         |
| Isopropylbenzene                                | 700                    | ND (0.26)              | -                     | ND (0.26)              | -                                                | ND (0.26)              | -                      | ND (0.26)              | -                     | ND (0.26)              | -                 | ND (0.26)              | -                    | ND (0.26)              | -                                                | ND (0.26)                                        |
| Methyl Acetate  Methylcyclohexane               | 7000                   | ND (3.1)<br>ND (0.22)  | -                     | ND (3.1)<br>ND (0.22)  |                                                  | ND (3.1)<br>ND (0.22)  | -                      | ND (3.1)<br>ND (0.22)  | =                     | ND (3.1)<br>ND (0.22)  | <del>-</del> -    | ND (3.1)<br>ND (0.22)  | -                    | ND (3.1)<br>ND (0.22)  | -                                                | ND (3.1)<br>ND (0.22)                            |
| Methyl Tert Butyl Ether                         | 70                     | ND (0.22)              | -                     | ND (0.26)              | -                                                | ND (0.26)              | -                      | ND (0.26)              | -                     | ND (0.22)              | -                 | ND (0.26)              | -                    | ND (0.26)              | -                                                | ND (0.22)                                        |
| 4-Methyl-2-pentanone(MIBK)                      | =                      | ND (1.1)               | -                     | ND (1.1)               | -                                                | ND (1.1)               | -                      | ND (1.1)               | -                     | ND (1.1)               | -                 | ND (1.1)               | =                    | ND (1.1)               | -                                                | ND (1.1)                                         |
| Methylene chloride                              | 3                      | ND (0.81)              | -                     | ND (0.81)              | -                                                | ND (0.81)              | -                      | ND (0.81)              | -                     | ND (0.81)              | -                 | ND (0.81)              | -                    | ND (0.81)              | -                                                | ND (0.81)                                        |
| Styrene<br>1,1,2,2-Tetrachloroethane            | 100                    | ND (0.26)<br>ND (0.39) | -                     | ND (0.26)<br>ND (0.39) | -                                                | ND (0.26)<br>ND (0.39) | -                      | ND (0.26)<br>ND (0.39) | -                     | ND (0.26)<br>2.5       | -                 | ND (0.26)<br>ND (0.39) | -                    | ND (0.26)<br>ND (0.39) | -                                                | ND (0.26)<br>ND (0.39)                           |
| Tetrachloroethene                               | 1                      | 0.43 J                 | J -                   | ND (0.35)              | -                                                | ND (0.35)              | -                      | ND (0.35)              | -                     | 1.2                    | -                 | ND (0.35)              | -                    | ND (0.35)              | +                                                | ND (0.35)                                        |
| Toluene                                         | 600                    | ND (0.22)              | -                     | ND (0.22)              | -                                                | ND (0.22)              | -                      | ND (0.22)              | -                     | ND (0.22)              | -                 | ND (0.22)              | -                    | ND (0.22)              | -                                                | ND (0.22)                                        |
| 1,2,3-Trichlorobenzene                          | -                      | ND (0.26)              | -                     | ND (0.26)              | -                                                | ND (0.26)              | -                      | ND (0.26)              | -                     | ND (0.26)              | -                 | ND (0.26)              | -                    | ND (0.26)              | -                                                | ND (0.26)                                        |
| 1,2,4-Trichlorobenzene<br>1,1,1-Trichloroethane | 9 30                   | ND (0.22)<br>ND (0.32) | -                     | ND (0.22)<br>ND (0.32) | -                                                | ND (0.22)<br>ND (0.32) | -                      | ND (0.22)<br>ND (0.32) | -                     | ND (0.22)<br>ND (0.32) | -                 | ND (0.22)<br>ND (0.32) | -                    | ND (0.22)<br>ND (0.32) | + -                                              | ND (0.22)<br>ND (0.32)                           |
| 1,1,2-Trichloroethane                           | 3                      | ND (0.32)<br>ND (0.28) | -                     | ND (0.28)              | -                                                | ND (0.28)              | -                      | ND (0.28)              | -                     | ND (0.28)              | -                 | ND (0.28)              | -                    | ND (0.28)              | -                                                | ND (0.32)                                        |
| Trichloroethene                                 | 1                      | 17.5                   | -                     | 0.25                   | J -                                              | ND (0.25)              | -                      | ND (0.25)              | -                     | 1.4                    | -                 | ND (0.25)              | -                    | ND (0.25)              | -                                                | ND (0.25)                                        |
| Trichlorofluoromethane                          | 2000                   | ND (0.28)              | -                     | ND (0.28)              | -                                                | ND (0.28)              | -                      | ND (0.28)              | -                     | ND (0.28)              | -                 | ND (0.28)              | -                    | ND (0.28)              |                                                  | ND (0.28)                                        |
| Vinyl chloride<br>m,p-Xylene                    | 1                      | ND (0.17)<br>ND (0.45) | -                     | ND (0.17)<br>ND (0.45) | -                                                | ND (0.17)<br>ND (0.45) | -                      | ND (0.17)<br>ND (0.45) | -                     | ND (0.17)<br>ND (0.45) | -                 | ND (0.17)<br>ND (0.45) | -                    | ND (0.17)<br>ND (0.45) | + -                                              | ND (0.17)<br>ND (0.45)                           |
| o-Xylene                                        | -                      | ND (0.43)              | -                     | ND (0.43)              | -                                                | ND (0.43)              | - 1                    | ND (0.20)              | -                     | ND (0.43)              | -                 | ND (0.20)              | -                    | ND (0.43)              | - 1                                              | ND (0.43)                                        |
| Xylene (total)                                  | 1000                   | ND (0.20)              | -                     | ND (0.20)              | -                                                | ND (0.20)              | -                      | ND (0.20)              | -                     | ND (0.20)              | -                 | ND (0.20)              | -                    | ND (0.20)              | -                                                | ND (0.20)                                        |
| Total VOCs                                      | -                      | 39.13                  |                       | 13.29                  |                                                  | 13.5                   |                        | 11.6                   |                       | 5.62                   |                   | 1.9                    | 1                    | 3.9                    | 1                                                | 0                                                |
| GC/MS Volatile TIC                              |                        |                        |                       |                        |                                                  |                        |                        |                        |                       |                        |                   |                        |                      |                        |                                                  |                                                  |
| Total TIC, Volatile                             | -                      | 0                      | - 1                   | 0                      | - 1                                              | 0                      | -                      | 0                      | -                     | 0                      |                   | 0                      | - 1                  | 0                      | 1 - 1                                            | 0                                                |
| Total Alkanes                                   | -                      | 0                      | -                     | 0                      | -                                                | 0                      |                        |                        |                       | 0                      |                   | 0                      |                      | 0                      | -                                                | 0                                                |
|                                                 |                        |                        |                       |                        |                                                  |                        |                        |                        |                       |                        |                   |                        |                      |                        |                                                  |                                                  |
| Metals Analysis                                 | 1 70                   | 076                    | 007                   | 1                      | 1 1 40 1                                         |                        | 40                     | 1                      | - 40                  | 1 40                   | 150               |                        |                      |                        | 1 400                                            |                                                  |
| Chromium<br>Iron                                | 70<br>300              | 871                    |                       | <10                    | <10<br><100                                      | <10                    |                        | <10                    | <10<br><100           | <10                    | <10<br><b>225</b> | <10                    | <10<br><100          | <10                    | <10<br><100                                      | -                                                |
| Sodium                                          | 50000                  | 241000                 |                       | 11300                  | ++                                               | 145000                 |                        | 152000                 |                       | 16100                  |                   | <10000                 |                      | <10000                 |                                                  | =                                                |
|                                                 | •                      |                        |                       |                        |                                                  |                        |                        | •                      | •                     |                        |                   |                        |                      |                        |                                                  |                                                  |
| General Chemistry                               |                        |                        |                       |                        |                                                  |                        |                        |                        |                       |                        |                   |                        |                      |                        |                                                  |                                                  |
| Solids, Total Dissolved<br>Sulfate              | 500000<br>250000       | 1570000<br>527000      |                       | 122000<br>38800        | -                                                | 976000<br>292000       | -                      | 1050000<br>315000      | -                     | 151000<br>83300        | -                 | <10000<br><10000       |                      | <10000<br><10000       | 1                                                | <del>                                     </del> |
|                                                 | 233000                 | 52,500                 | 1                     | 53000                  |                                                  | 232000                 | 1                      | 323000                 | I                     | 55500                  |                   | -10000                 |                      | -10000                 |                                                  |                                                  |

| Sample ID                                        |                                             | IRND4 ISCO-MW1-        | IRND4 ISCO-MW1 - | IRND4 ISCO-MW1 ASC -   | IRND4 ISCO-MW2         | IRND4 ISCO-MW2 | IRND4 ISCO-MW2 ASC     | IRND4 ISCO-MW3         | IRND4 ISCO-MW3                                   | IRND4 ISCO-MW3 ASC     | IRND4 ISCO-MW4             | IRND4 ISCO-MW4 | IRND4 ISCO-MW5           | IRND4 ISCO-MW5                                   |
|--------------------------------------------------|---------------------------------------------|------------------------|------------------|------------------------|------------------------|----------------|------------------------|------------------------|--------------------------------------------------|------------------------|----------------------------|----------------|--------------------------|--------------------------------------------------|
| Lab Sample ID                                    | NJ CLASS IIA                                | JB76271-15             | JB76271-15F      | JB76271-24             | JB76271-16             | JB76271-16F    | JB76271-25             | JB76271-17             | JB76271-17F                                      | JB76271-26             | JB76271-8                  | JB76271-8F     | JB76271-14               | JB76271-14F                                      |
| Sample Date                                      | GROUNDWATER QUALITY<br>CRITERIA (7/22/2010) | 9/11/2014              | 9/11/2014        | 9/11/2014              | 9/11/2014              | 9/11/2014      | 9/11/2014              | 9/11/2014              | 9/11/2014                                        | 9/11/2014              | 9/10/2014                  | 9/10/2014      | 9/11/2014                | 9/11/2014                                        |
| Matrix                                           | ug/L                                        | GW                     | GW-FILTERED      | GW                     | GW                     | GW-FILTERED    | GW                     | GW                     | GW-FILTERED                                      | GW                     | GW                         | GW-FILTERED    | GW                       | GW-FILTERED                                      |
| Unit                                             | ~ <sub>6</sub> / -                          | ug/L                   | ug/L             | ug/L                   | ug/L                   | ug/L           | ug/L                   | ug/L                   | ug/L                                             | ug/L                   | ug/L                       | ug/L           | ug/L                     | ug/L                                             |
| Volatile Organic Compounds (VOCs)                |                                             |                        |                  |                        | ,                      |                |                        |                        |                                                  | ,                      |                            | ,              | ,                        |                                                  |
| Acetone                                          | 6000                                        | ND (2.6)               | -                | ND (2.6)               | 304                    | -              | 235                    | 33.8                   | -                                                | 27.5                   | ND (2.6)                   | -              | ND (2.6)                 | -                                                |
| Benzene                                          | 1                                           | ND (0.21)              | =                | ND (0.21)              | 1.7                    | -              | 2.3                    | ND (0.21)              | =                                                | ND (0.21)              | ND (0.21)                  | -              | ND (0.21)                | -                                                |
| Bromochloromethane<br>Bromodichloromethane       | - 1                                         | ND (0.49)<br>ND (0.28) | -                | ND (0.49)<br>ND (0.28) | ND (0.97)<br>ND (0.56) | -              | ND (0.49)<br>ND (0.28) | ND (0.49)<br>ND (0.28) | -                                                | ND (0.49)<br>ND (0.28) | ND (0.49)<br>ND (0.28)     | -              | ND (0.49)<br>ND (0.28)   | -                                                |
| Bromoform  Bromoform                             | 1 4                                         | ND (0.28)<br>ND (0.31) | -                | ND (0.28)<br>ND (0.31) | ND (0.62)              | -              | ND (0.28)<br>ND (0.31) | ND (0.28)<br>ND (0.31) | -                                                | ND (0.28)<br>ND (0.31) | ND (0.28)<br>ND (0.31)     | -              | ND (0.28)<br>ND (0.31)   | -                                                |
| Bromomethane                                     | 10                                          | ND (0.39)              | -                | ND (0.39)              | 26.7                   | _              | 32                     | ND (0.39)              | -                                                | ND (0.39)              | ND (0.39)                  | _              | ND (0.39)                | _                                                |
| 2-Butanone (MEK)                                 | 300                                         | ND (2.5)               | -                | ND (2.5)               | 239                    | -              | 185                    | ND (2.5)               | -                                                | ND (2.5)               | ND (2.5)                   | -              | ND (2.5)                 | -                                                |
| Carbon disulfide                                 | 700                                         | ND (0.50)              | -                | ND (0.50)              | 20                     | -              | 18.6                   | ND (0.50)              | -                                                | ND (0.50)              | ND (0.50)                  | -              | ND (0.50)                | -                                                |
| Carbon tetrachloride                             | 1                                           | ND (0.24)              | -                | ND (0.24)              | ND (0.47)              | -              | ND (0.24)              | ND (0.24)              | -                                                | ND (0.24)              | ND (0.24)                  | -              | ND (0.24)                | -                                                |
| Chlorobenzene                                    | 50                                          | ND (0.27)              | -                | ND (0.27)              | ND (0.54)              | -              | ND (0.27)              | ND (0.27)              | -                                                | ND (0.27)              | ND (0.27)                  | -              | ND (0.27)                | -                                                |
| Chloroethane                                     | -                                           | ND (0.56)              | -                | ND (0.56)              | ND (1.1)               | -              | ND (0.56)              | ND (0.56)              | -                                                | ND (0.56)              | ND (0.56)                  | -              | ND (0.56)                | -                                                |
| Chloroform                                       | 70                                          | ND (0.20)              | -                | ND (0.20)              | 3.6                    | -              | 3.3                    | ND (0.20)              | -                                                | ND (0.20)              | 0.34 J                     | -              | ND (0.20)                | -                                                |
| Chloromethane                                    | -                                           | ND (0.33)              | -                | ND (0.33)              | 3.4                    | -              | 2.8                    | ND (0.33)              | -                                                | ND (0.33)              | ND (0.33)                  | -              | ND (0.33)                | -                                                |
| Cyclohexane                                      | - 0.02                                      | ND (0.37)              | -                | ND (0.37)              | ND (0.74)              | -              | ND (0.37)              | ND (0.37)              | =                                                | ND (0.37)              | ND (0.37)                  | -              | ND (0.37)                | -                                                |
| 1,2-Dibromo-3-chloropropane Dibromochloromethane | 0.02                                        | ND (1.2)<br>ND (0.25)  | -                | ND (1.2)<br>ND (0.25)  | ND (2.3)<br>ND (0.50)  | -              | ND (1.2)<br>ND (0.25)  | ND (1.2)<br>ND (0.25)  | <del>                                     </del> | ND (1.2)<br>ND (0.25)  | ND (1.2)<br>ND (0.25)      | -              | ND (1.2)<br>ND (0.25)    | <del>                                     </del> |
| 1,2-Dibromoethane                                | 0.03                                        | ND (0.23)              | -                | ND (0.23)              | ND (0.45)              |                | ND (0.23)              | ND (0.23)              | -                                                | ND (0.23)              | ND (0.23)                  | -              | ND (0.23)                | -                                                |
| 1,2-Dichlorobenzene                              | 600                                         | ND (0.16)              | -                | ND (0.16)              | 0.68 J                 | -              | 2.7                    | ND (0.16)              |                                                  | ND (0.16)              | ND (0.16)                  | -              | ND (0.16)                | -                                                |
| 1,3-Dichlorobenzene                              | 600                                         | ND (0.26)              | -                | ND (0.26)              | ND (0.51)              | -              | ND (0.26)              | ND (0.26)              | -                                                | ND (0.26)              | ND (0.26)                  | -              | ND (0.26)                | -                                                |
| 1,4-Dichlorobenzene                              | 75                                          | ND (0.24)              |                  | ND (0.24)              | ND (0.47)              | -              | 0.24 J                 | ND (0.24)              | -                                                | ND (0.24)              | ND (0.24)                  | -              | ND (0.24)                | -                                                |
| Dichlorodifluoromethane                          | 1000                                        | ND (0.73)              | -                | ND (0.73)              | ND (1.5)               | -              | ND (0.73)              | ND (0.73)              | -                                                | ND (0.73)              | ND (0.73)                  | -              | ND (0.73)                | -                                                |
| 1,1-Dichloroethane                               | 50                                          | ND (0.35)              | -                | ND (0.35)              | ND (0.70)              | -              | ND (0.35)              | ND (0.35)              | -                                                | ND (0.35)              | ND (0.35)                  | -              | ND (0.35)                | -                                                |
| 1,2-Dichloroethane                               | 2                                           | 4                      | =                | 3.7                    | 574                    | -              | 476                    | ND (0.30)              | =                                                | ND (0.30)              | 0.66 J                     | -              | ND (0.30)                | -                                                |
| 1,1-Dichloroethene                               | 1                                           | ND (0.50)              | -                | ND (0.50)              | ND (0.99)              | -              | ND (0.50)              | ND (0.50)              | -                                                | ND (0.50)              | ND (0.50)                  | -              | ND (0.50)                | -                                                |
| cis-1,2-Dichloroethene                           | 70                                          | ND (0.33)              | -                | ND (0.33)              | ND (0.65)              | -              | ND (0.33)              | 73.8                   | -                                                | 66.9                   | ND (0.33)                  | -              | 0.50                     | J -                                              |
| trans-1,2-Dichloroethene                         | 100                                         | ND (0.51)              | -                | ND (0.51)<br>ND (0.43) | ND (1.0)               | -              | ND (0.51)              | 13.4<br>ND (0.43)      | -                                                | ND (0.51)<br>ND (0.43) | ND (0.51)                  | -              | ND (0.51)                | -                                                |
| 1,2-Dichloropropane<br>cis-1,3-Dichloropropene   | 1                                           | ND (0.43)<br>ND (0.28) | -                | ND (0.43)<br>ND (0.28) | ND (0.87)<br>ND (0.57) | <u> </u>       | ND (0.43)<br>ND (0.28) | ND (0.43)<br>ND (0.28) | -                                                | ND (0.43)<br>ND (0.28) | ND (0.43)<br>ND (0.28)     | -              | ND (0.43)<br>ND (0.28)   | <del>                                     </del> |
| trans-1,3-Dichloropropene                        | -                                           | ND (0.32)              | -                | ND (0.32)              | ND (0.63)              | _              | ND (0.32)              | ND (0.32)              | -                                                | ND (0.32)              | ND (0.32)                  | _              | ND (0.32)                | _                                                |
| 1,4-Dioxane                                      | -                                           | ND (51)                | -                | ND (51)                | ND (100)               | -              | ND (51)                | ND (51)                | -                                                | ND (51)                | ND (51)                    | -              | ND (51)                  | -                                                |
| Ethylbenzene                                     | 700                                         | ND (0.40)              | -                | ND (0.40)              | ND (0.79)              | -              | ND (0.40)              | ND (0.40)              | -                                                | ND (0.40)              | ND (0.40)                  | -              | ND (0.40)                | -                                                |
| Freon 113                                        | -                                           | ND (0.45)              | -                | ND (0.45)              | ND (0.89)              | -              | ND (0.45)              | ND (0.45)              | -                                                | ND (0.45)              | ND (0.45)                  | -              | ND (0.45)                | -                                                |
| 2-Hexanone                                       | -                                           | ND (1.7)               | -                | ND (1.7)               | ND (3.5)               | -              | ND (1.7)               | ND (1.7)               | -                                                | ND (1.7)               | ND (1.7)                   | -              | ND (1.7)                 | -                                                |
| Isopropylbenzene                                 | 700                                         | ND (0.26)              | =                | ND (0.26)              | ND (0.51)              | -              | ND (0.26)              | ND (0.26)              | =                                                | ND (0.26)              | ND (0.26)                  | -              | ND (0.26)                | -                                                |
| Methyl Acetate                                   | 7000                                        | ND (3.1)               | -                | ND (3.1)               | ND (6.2)               | -              | ND (3.1)               | ND (3.1)               | -                                                | ND (3.1)               | ND (3.1)                   | -              | ND (3.1)                 | -                                                |
| Methylcyclohexane<br>Methyl Tert Butyl Ether     | 70                                          | ND (0.22)<br>ND (0.26) | -                | ND (0.22)<br>ND (0.26) | ND (0.43)<br>ND (0.53) | -              | ND (0.22)<br>ND (0.26) | ND (0.22)<br>ND (0.26) | -                                                | ND (0.22)<br>ND (0.26) | ND (0.22)<br>ND (0.26)     | -              | ND (0.22)<br>ND (0.26)   | +                                                |
| 4-Methyl-2-pentanone(MIBK)                       | -                                           | ND (1.1)               | -                | ND (1.1)               | ND (0.33)              | -              | ND (0.20)              | ND (1.1)               | -                                                | ND (0.20)              | ND (1.1)                   | -              | ND (1.1)                 | -                                                |
| Methylene chloride                               | 3                                           |                        | J -              | 1.4 J                  | 2.4 J                  | -              | 2.3                    | ND (0.81)              | -                                                | ND (0.81)              | 2.1                        | -              | ND (0.81)                | -                                                |
| Styrene                                          | 100                                         | ND (0.26)              | -                | ND (0.26)              | ND (0.51)              | -              | ND (0.26)              | ND (0.26)              | -                                                | ND (0.26)              | ND (0.26)                  | -              | ND (0.26)                | -                                                |
| 1,1,2,2-Tetrachloroethane Tetrachloroethene      | 1                                           | ND (0.39)<br>ND (0.35) | -                | ND (0.39)<br>ND (0.35) | 24.6<br>3.3            | -              | 16.2<br>1.7            | ND (0.39)<br>2.4       | -                                                | ND (0.39)              | ND (0.39)<br><b>0.51</b> J | -              | ND (0.39)<br><b>0.45</b> | -<br>J -                                         |
| Toluene                                          | 600                                         | ND (0.22)              | -                | ND (0.33)              | ND (0.44)              | -              | ND (0.22)              | ND (0.22)              | -                                                | ND (0.22)              | ND (0.22)                  | -              | ND (0.22)                |                                                  |
| 1,2,3-Trichlorobenzene                           |                                             | ND (0.26)              | -                | ND (0.26)              | ND (0.53)              | -              | 0.68 J                 |                        | -                                                | ND (0.26)              | ND (0.26)                  | -              | ND (0.26)                | -                                                |
| 1,2,4-Trichlorobenzene                           | 9                                           | ND (0.22)              | -                | ND (0.22)              | 0.72 J                 | -              | 7.6                    | ND (0.22)              |                                                  | ND (0.22)              | ND (0.22)                  | -              | ND (0.22)                |                                                  |
| 1,1,1-Trichloroethane<br>1.1,2-Trichloroethane   | 30                                          | ND (0.32)<br>ND (0.28) | =                | ND (0.32)<br>ND (0.28) | ND (0.64)<br>ND (0.55) | -              | ND (0.32)<br>0.34 J    | ND (0.32)<br>ND (0.28) | -                                                | ND (0.32)<br>ND (0.28) | ND (0.32)<br>ND (0.28)     | -              | 0.74<br>ND (0.28)        | J -                                              |
| Trichloroethene                                  | 1                                           | · · ·                  | J -              | 0.34 J                 | 14.6                   | -              | 7.9                    | 87.1                   | -                                                | 68.3                   | 0.95 J                     |                | ND (0.28)                | -                                                |
| Trichlorofluoromethane                           | 2000                                        | ND (0.28)              |                  | ND (0.28)              | ND (0.56)              | <u>-</u>       | ND (0.28)              | ND (0.28)              | <u>-</u>                                         | ND (0.28)              | ND (0.28)                  | <u>-</u>       | ND (0.28)                | <u> </u>                                         |
| Vinyl chloride                                   | 1                                           | ND (0.17)              | -                | ND (0.17)              | ND (0.35)              | -              | ND (0.17)              | ND (0.17)              | -                                                | ND (0.17)              | ND (0.17)                  | -              | ND (0.17)                | -                                                |
| m,p-Xylene                                       | -                                           | ND (0.45)              | -                | ND (0.45)              | ND (0.90)              | -              | ND (0.45)              | ND (0.45)              | -                                                | ND (0.45)              | ND (0.45)                  | -              | ND (0.45)                | -                                                |
| o-Xylene<br>Xylene (total)                       | 1000                                        | ND (0.20)<br>ND (0.20) | -                | ND (0.20)<br>ND (0.20) | ND (0.40)<br>ND (0.40) | -              | ND (0.20)<br>ND (0.20) | ND (0.20)<br>ND (0.20) |                                                  | ND (0.20)<br>ND (0.20) | ND (0.20)<br>ND (0.20)     | -              | ND (0.20)<br>ND (0.20)   | -                                                |
| Total VOCs                                       | -                                           | 6.08                   | 1                | 5.44                   | 1218.7                 |                | 994.66                 | 210.5                  |                                                  | 164.4                  | 4.56                       |                | 6.92                     |                                                  |
|                                                  |                                             |                        |                  |                        |                        |                |                        |                        |                                                  |                        |                            |                |                          | <u> </u>                                         |
| GC/MS Volatile TIC                               |                                             |                        |                  |                        |                        |                |                        |                        |                                                  |                        |                            |                |                          |                                                  |
| Total TIC, Volatile                              | -                                           |                        |                  | 6.3 J                  |                        |                | 9.9 J                  |                        | -                                                |                        | 0                          |                | 0                        | -                                                |
| Total Alkanes                                    | =                                           | 0                      | -                | 0                      | 0                      | -              | 0                      | 0                      | =                                                | 0                      | 0                          | -              | 0                        | -                                                |
| Metals Analysis                                  |                                             |                        |                  |                        |                        |                |                        |                        |                                                  |                        |                            |                |                          |                                                  |
| Chromium                                         | 70                                          | <10                    | <10              | -                      | 1280                   | 845            | -                      | 1730                   | 2090                                             | - 1                    | 55.6                       | <10            | <10                      | <10                                              |
| Iron                                             | 300                                         | -                      |                  | -                      | -                      | <100           | -                      | -                      | <100                                             | -                      | -                          | <del> </del>   | -                        | 835                                              |
| Sodium                                           | 50000                                       | 36400                  | -                | -                      | 1990000                | -              | -                      | 664000                 | -                                                | -                      | 13000                      | -              | 18300                    | -                                                |
| Company Chamistan                                |                                             |                        |                  |                        |                        |                |                        |                        |                                                  |                        |                            |                |                          |                                                  |
| General Chemistry Solids, Total Dissolved        | 500000                                      | 245000                 |                  |                        | 7120000                |                | 1                      | 2220000                | 1                                                | ı                      | 137000                     | 1              | 118000                   | 1                                                |
| Solids, Total Dissolved<br>Sulfate               | 250000                                      | 192000                 | -                | -                      | 5280000                | -              | -                      | 930000                 | -                                                | -                      | 137000<br>59900            | -              | 45100                    | -                                                |
| Ll                                               |                                             |                        | 1                | 1                      |                        | 1              |                        |                        | 1                                                | 1                      | 1                          |                | 1                        |                                                  |

|                                                       | Sample ID NJ CLASS IIA          | IRND4_ISCO-MW5 ASC       | IRND4_ISCO-MW6           | IRND4_ISCO-MW6           | IRND4_ISCO-MW7             | IRND4_ISCO-MW7           | IRND4_ISCO-MW8           | IRND4_ISCO-MW8           | IRND4_ISCO-MW9          | IRND4_ISCO-MW9           | IRND4_ISCO-MW9 ASC         | IRND4_IW1-DR1              | IRND4_IW1-DR1           | IRND4_IWI-BT2           | IRND4_IWI-BT2                                    |
|-------------------------------------------------------|---------------------------------|--------------------------|--------------------------|--------------------------|----------------------------|--------------------------|--------------------------|--------------------------|-------------------------|--------------------------|----------------------------|----------------------------|-------------------------|-------------------------|--------------------------------------------------|
|                                                       | Sample Date GROUNDWATER QUALITY | JB76271-23<br>9/11/2014  | JB76271-19<br>9/11/2014  | JB76271-19F<br>9/11/2014 | JB76271-13<br>9/11/2014    | JB76271-13F<br>9/11/2014 | JB76271-20<br>9/11/2014  | JB76271-20F<br>9/11/2014 | JB76271-10<br>9/10/2014 | JB76271-10F<br>9/10/2014 | JB76271-22<br>9/10/2014    | JB76271-7<br>9/10/2014     | JB76271-7F<br>9/10/2014 | JB76271-18<br>9/11/2014 | JB76271-18F<br>9/11/2014                         |
|                                                       | Matrix                          | GW                       | GW                       | GW-FILTERED              | GW                         | GW-FILTERED              | GW                       | GW-FILTERED              | GW                      | GW-FILTERED              | 5/15/2014<br>GW            | GW                         | GW-FILTERED             | GW                      | GW-FILTERED                                      |
|                                                       | ug/L<br>Unit                    | ug/L                     | ug/L                     | ug/L                     | ug/L                       | ug/L                     | ug/L                     | ug/L                     | ug/L                    | ug/L                     | ug/L                       | ug/L                       | ug/L                    | ug/L                    | ug/L                                             |
| Volatile Organic Compounds (V                         | VOCs)                           |                          |                          |                          |                            |                          |                          |                          |                         |                          |                            |                            |                         |                         |                                                  |
| Acetone                                               | 6000                            | ND (2.6)                 | ND (2.6)                 | =                        | 45                         | -                        | 47.4                     | -                        | ND (2.6)                | -                        | 9.2 J                      | 112 (210)                  | =                       | 9.5                     | J -                                              |
| Benzene<br>Bromoshloromothana                         | 1                               | ND (0.21)<br>ND (0.49)   | ND (0.21)<br>ND (0.49)   | -                        | ND (0.21)<br>ND (0.49)     | -                        | ND (0.21)<br>ND (0.49)   | -                        | ND (0.21)<br>ND (0.49)  | -                        | ND (0.21)<br>ND (0.49)     | ND (0.21)                  | -                       | ND (0.21)               | -                                                |
| Bromochloromethane<br>Bromodichloromethane            | 1                               | ND (0.49)<br>ND (0.28)   | ND (0.49)<br>ND (0.28)   | -                        | ND (0.49)<br>ND (0.28)     | -                        | ND (0.49)<br>ND (0.28)   | -                        | ND (0.49)<br>ND (0.28)  | -                        | ND (0.49)<br>ND (0.28)     | ND (0.49)<br>ND (0.28)     | -                       | ND (0.49)<br>ND (0.28)  | -                                                |
| Bromoform                                             | 4                               | ND (0.31)                | ND (0.31)                | -                        | ND (0.31)                  | -                        | ND (0.31)                | -                        | ND (0.31)               | -                        | ND (0.31)                  | ND (0.31)                  | -                       | ND (0.31)               | -                                                |
| Bromomethane                                          | 10                              | ND (0.39)                | ND (0.39)                | -                        | 13.7                       | -                        | ND (0.39)                | -                        | ND (0.39)               | -                        | ND (0.39)                  | ND (0.39)                  | -                       | ND (0.39)               | -                                                |
| 2-Butanone (MEK)                                      | 300                             | ND (2.5)                 | ND (2.5)                 | =                        | ND (2.5)                   | -                        | ND (2.5)                 | -                        | ND (2.5)                | =                        | ND (2.5)                   | ND (2.5)                   | =                       | ND (2.5)                | -                                                |
| Carbon disulfide<br>Carbon tetrachloride              | 700<br>1                        | ND (0.50)<br>ND (0.24)   | ND (0.50)<br>ND (0.24)   | -                        | ND (0.50)<br><b>0.73</b> J | -                        | ND (0.50)<br><b>0.31</b> | -                        | ND (0.50)<br>ND (0.24)  | -                        | ND (0.50)<br>ND (0.24)     | ND (0.50)<br>ND (0.24)     | -                       | ND (0.50)<br>ND (0.24)  | -                                                |
| Chlorobenzene                                         | 50                              | ND (0.24)                | ND (0.24)                | -                        | ND (0.27)                  | -                        | ND (0.27)                | -                        | ND (0.24)<br>ND (0.27)  | -                        | ND (0.24)<br>ND (0.27)     | ND (0.24)                  | -                       | ND (0.24)               | -                                                |
| Chloroethane                                          | -                               | ND (0.56)                | ND (0.56)                | -                        | ND (0.56)                  | -                        | ND (0.56)                | -                        | ND (0.56)               | -                        | ND (0.56)                  | ND (0.56)                  | -                       | ND (0.56)               | -                                                |
| Chloroform                                            | 70                              | ND (0.20)                | ND (0.20)                | Ξ                        | 1.1                        | ē                        | 1.1                      | =                        | ND (0.20)               | =                        | ND (0.20)                  | ND (0.20)                  | =                       | ND (0.20)               | =                                                |
| Chloromethane                                         | -                               | ND (0.33)                | ND (0.33)                | -                        | 2.8                        | -                        | ND (0.33)                | -                        | ND (0.33)               | -                        | ND (0.33)                  | ND (0.33)                  | -                       | ND (0.33)               | -                                                |
| Cyclohexane                                           | 0.02                            | ND (0.37)                | ND (0.37)<br>ND (1.2)    | -                        | ND (0.37)<br>ND (1.2)      | -                        | ND (0.37)                | -                        | ND (0.37)<br>ND (1.2)   | -                        | ND (0.37)                  | ND (0.37)                  | -                       | ND (0.37)<br>ND (1.2)   | + -                                              |
| 1,2-Dibromo-3-chloropropane Dibromochloromethane      | 0.02                            | ND (1.2)<br>ND (0.25)    | ND (1.2)<br>ND (0.25)    | -                        | ND (1.2)<br>ND (0.25)      | -                        | ND (1.2)<br>ND (0.25)    | -                        | ND (1.2)<br>ND (0.25)   | -                        | ND (1.2)<br>ND (0.25)      | ND (1.2)<br>ND (0.25)      | -                       | ND (1.2)<br>ND (0.25)   | +                                                |
| 1,2-Dibromoethane                                     | 0.03                            | ND (0.23)                | ND (0.23)                | -                        | ND (0.23)                  | -                        | ND (0.23)                | -                        | ND (0.23)               | -                        | ND (0.23)                  | ND (0.23)                  | -                       | ND (0.23)               | -                                                |
| 1,2-Dichlorobenzene                                   | 600                             | ND (0.16)                | ND (0.16)                | -                        | ND (0.16)                  |                          | ND (0.16)                | -                        | ND (0.16)               | -                        | ND (0.16)                  | ND (0.16)                  | -                       | ND (0.16)               | -                                                |
| 1,3-Dichlorobenzene                                   | 600                             | ND (0.26)                | ND (0.26)                | -                        | ND (0.26)                  | -                        | ND (0.26)                | -                        | ND (0.26)               | -                        | ND (0.26)                  | ND (0.26)                  | -                       | ND (0.26)               | -                                                |
| 1,4-Dichlorobenzene Dichlorodifluoromethane           | 75<br>1000                      | ND (0.24)<br>ND (0.73)   | ND (0.24)<br>ND (0.73)   | -                        | ND (0.24)<br>ND (0.73)     | -                        | ND (0.24)<br>ND (0.73)   | -                        | ND (0.24)<br>ND (0.73)  | -                        | ND (0.24)<br>ND (0.73)     | ND (0.24)<br>ND (0.73)     | -                       | ND (0.24)<br>ND (0.73)  | -                                                |
| 1,1-Dichloroethane                                    | 50                              | ND (0.75)                | ND (0.75)<br>ND (0.35)   | -                        | ND (0.75)                  | -                        | ND (0.75)<br>ND (0.35)   | -                        | ND (0.75)<br>ND (0.35)  | -                        | ND (0.75)<br>ND (0.35)     | ND (0.75)<br>ND (0.35)     | -                       | ND (0.75)               | <del>                                     </del> |
| 1,2-Dichloroethane                                    | 2                               | ND (0.30)                | 2.4                      | -                        | 4.6                        | -                        | 1.7                      | -                        | ND (0.30)               | -                        | 0.79 J                     | ND (0.30)                  | -                       | ND (0.30)               | -                                                |
| 1,1-Dichloroethene                                    | 1                               | ND (0.50)                | ND (0.50)                | -                        | ND (0.50)                  | -                        | ND (0.50)                | -                        | ND (0.50)               | -                        | ND (0.50)                  | ND (0.50)                  | -                       | ND (0.50)               | -                                                |
| cis-1,2-Dichloroethene                                | 70                              | 0.84                     | J 3                      | -                        | ND (0.33)                  | -                        | ND (0.33)                | -                        | ND (0.33)               | -                        | ND (0.33)                  | ND (0.33)                  | -                       | 4.8                     | -                                                |
| trans-1,2-Dichloroethene<br>1,2-Dichloropropane       | 100                             | ND (0.51)<br>ND (0.43)   | ND (0.51)<br>ND (0.43)   | -                        | ND (0.51)<br>ND (0.43)     | -                        | ND (0.51)<br>ND (0.43)   | -                        | ND (0.51)<br>ND (0.43)  | =                        | ND (0.51)<br>ND (0.43)     | ND (0.51)<br>ND (0.43)     | -                       | 0.55<br>ND (0.43)       | -                                                |
| cis-1,3-Dichloropropene                               | -                               | ND (0.43)<br>ND (0.28)   | ND (0.43)<br>ND (0.28)   | -                        | ND (0.43)                  | -                        | ND (0.43)                | -                        | ND (0.43)               | -                        | ND (0.43)<br>ND (0.28)     | ND (0.43)<br>ND (0.28)     | -                       | ND (0.43)               | <del>                                     </del> |
| trans-1,3-Dichloropropene                             | -                               | ND (0.32)                | ND (0.32)                | -                        | ND (0.32)                  | -                        | ND (0.32)                | -                        | ND (0.32)               | -                        | ND (0.32)                  | ND (0.32)                  | -                       | ND (0.32)               | -                                                |
| 1,4-Dioxane                                           | -                               | ND (51)                  | ND (51)                  | -                        | ND (51)                    | -                        | ND (51)                  | -                        | ND (51)                 | -                        | ND (51)                    | ND (51)                    | -                       | ND (51)                 | -                                                |
| Ethylbenzene                                          | 700                             | ND (0.40)                | ND (0.40)                | -                        | ND (0.40)                  | -                        | ND (0.40)                | -                        | ND (0.40)               | -                        | ND (0.40)                  | ND (0.40)                  | -                       | ND (0.40)               | -                                                |
| Freon 113<br>2-Hexanone                               |                                 | ND (0.45)<br>ND (1.7)    | ND (0.45)<br>ND (1.7)    | -                        | ND (0.45)<br>ND (1.7)      | -                        | ND (0.45)<br>ND (1.7)    | -                        | ND (0.45)<br>ND (1.7)   | -                        | ND (0.45)<br>ND (1.7)      | ND (0.45)<br>ND (1.7)      | -                       | ND (0.45)<br>ND (1.7)   | -                                                |
| Isopropylbenzene                                      | 700                             | ND (0.26)                | ND (0.26)                | -                        | ND (0.26)                  | -                        | ND (0.26)                | -                        | ND (0.26)               | -                        | ND (0.26)                  | ND (0.26)                  | -                       | ND (0.26)               | -                                                |
| Methyl Acetate                                        | 7000                            | ND (3.1)                 | ND (3.1)                 | =                        | ND (3.1)                   | ÷                        | ND (3.1)                 | -                        | ND (3.1)                | =                        | ND (3.1)                   | ND (3.1)                   | =                       | ND (3.1)                | -                                                |
| Methylcyclohexane                                     | -                               | ND (0.22)                | ND (0.22)                | =                        | ND (0.22)                  | -                        | ND (0.22)                | -                        | ND (0.22)               | =                        | ND (0.22)                  | ND (0.22)                  | =                       | ND (0.22)               | -                                                |
| Methyl Tert Butyl Ether<br>4-Methyl-2-pentanone(MIBK) | 70                              | ND (0.26)<br>ND (1.1)    | ND (0.26)<br>ND (1.1)    | -                        | ND (0.26)<br>ND (1.1)      | -                        | ND (0.26)<br>ND (1.1)    | -                        | ND (0.26)<br>ND (1.1)   | -                        | ND (0.26)<br>ND (1.1)      | ND (0.26)<br>ND (1.1)      | -                       | ND (0.26)<br>ND (1.1)   | -                                                |
| Methylene chloride                                    | 3                               | ND (0.81)                | ND (0.81)                | -                        | ND (0.81)                  | -                        | ND (0.81)                | -                        | ND (0.81)               | -                        | ND (0.81)                  | ND (0.81)                  | -                       | ND (0.81)               | -                                                |
| Styrene                                               | 100                             | ND (0.26)                | ND (0.26)                | -                        | ND (0.26)                  | -                        | ND (0.26)                | -                        | ND (0.26)               | -                        | ND (0.26)                  | ND (0.26)                  | -                       | ND (0.26)               | -                                                |
| 1,1,2,2-Tetrachloroethane<br>Tetrachloroethene        | 1 1                             | ND (0.39)<br><b>0.41</b> | ND (0.39)<br>J ND (0.35) | -                        | ND (0.39)<br><b>0.63</b> J | -                        | ND (0.39)<br><b>0.42</b> | J -                      | ND (0.39)<br>1.4        | -                        | ND (0.39)<br>1             | ND (0.39)<br><b>0.57</b> J | -                       | ND (0.39)<br>0.42       | · ·                                              |
| Toluene                                               | 600                             | ND (0.22)                | ND (0.22)                | =                        | ND (0.22)                  | -                        | ND (0.22)                | -                        | ND (0.22)               | -                        | ND (0.22)                  | ND (0.22)                  | =                       | ND (0.22)               | -                                                |
| 1,2,3-Trichlorobenzene<br>1,2,4-Trichlorobenzene      | - 9                             | ND (0.26)<br>ND (0.22)   | ND (0.26)<br>ND (0.22)   | -                        | ND (0.26)<br>ND (0.22)     |                          | ND (0.26)<br>ND (0.22)   | -                        | ND (0.26)<br>ND (0.22)  | -                        | ND (0.26)<br><b>0.47</b> J | ND (0.26)<br>ND (0.22)     | -                       | ND (0.26)<br>ND (0.22)  | -                                                |
| 1,1,1-Trichloroethane                                 | 30                              | 0.85                     | J ND (0.22)              | -                        | ND (0.22)<br>ND (0.32)     | -                        | ND (0.22)<br>ND (0.32)   | -                        | ND (0.22)<br>ND (0.32)  |                          | ND (0.32)                  | ND (0.22)<br>ND (0.32)     | -                       | ND (0.22)<br>ND (0.32)  |                                                  |
| 1,1,2-Trichloroethane                                 | 3                               | ND (0.28)                | ND (0.28)                | -                        | ND (0.28)                  | -                        | ND (0.28)                | -                        | ND (0.28)               | -                        | ND (0.28)                  | ND (0.28)                  | -                       | ND (0.28)               | -                                                |
| Trichloroethene<br>Trichlorofluoromethane             | 2000                            | 4.4<br>ND (0.28)         | 5.4<br>ND (0.28)         | -                        | 1.4<br>ND (0.28)           | -                        | 1.2<br>ND (0.28)         | -                        | 14.8<br>ND (0.28)       | -                        | 13.3<br>ND (0.28)          | 2.4<br>ND (0.28)           | -                       | 12.7<br>ND (0.28)       | -                                                |
| Vinyl chloride                                        | 1                               | ND (0.17)                | ND (0.28)<br>ND (0.17)   | -                        | ND (0.28)<br>ND (0.17)     | -                        | ND (0.28)<br>ND (0.17)   | -                        | ND (0.28)<br>ND (0.17)  | -                        | ND (0.28)<br>ND (0.17)     | ND (0.28)<br>ND (0.17)     | -                       | ND (0.28)<br>ND (0.17)  | -                                                |
| m,p-Xylene                                            | -                               | ND (0.45)                | ND (0.45)                | -                        | ND (0.45)                  | -                        | ND (0.45)                | -                        | ND (0.45)               | -                        | ND (0.45)                  | ND (0.45)                  | -                       | ND (0.45)               | -                                                |
| o-Xylene<br>Xylene (total)                            | 1000                            | ND (0.20)<br>ND (0.20)   | ND (0.20)<br>ND (0.20)   | -                        | ND (0.20)<br>ND (0.20)     | -                        | ND (0.20)<br>ND (0.20)   | -                        | ND (0.20)<br>ND (0.20)  | -                        | ND (0.20)<br>ND (0.20)     | ND (0.20)<br>ND (0.20)     | -                       | ND (0.20)<br>ND (0.20)  | + -                                              |
| Total VOCs                                            | -                               | 6.5                      | 10.8                     |                          | 69.96                      |                          |                          |                          | 16.2                    |                          | 24.76                      | 2.97                       |                         | 27.97                   |                                                  |
| CO (NACA VIII A TIC                                   |                                 |                          |                          |                          |                            |                          |                          |                          |                         |                          |                            |                            |                         |                         |                                                  |
| GC/MS Volatile TIC Total TIC, Volatile                |                                 | 0                        |                          | _ 1                      | 24 J                       | 1 -                      | 1 0 1                    |                          | 0                       |                          | 0                          | 0                          |                         | 0                       |                                                  |
| Total Alkanes                                         |                                 | 0                        | 0                        | -                        | 0                          | -                        | 0                        | -                        | 0                       | -                        | 0                          | 0                          | -                       | 0                       | -                                                |
|                                                       |                                 |                          |                          | <u> </u>                 |                            |                          |                          |                          | <u> </u>                |                          |                            |                            |                         |                         |                                                  |
| Metals Analysis                                       | 70                              |                          |                          | <10                      | 816                        | 007                      | 3210                     | 2110                     | 10                      |                          | 1                          |                            | 1 410                   | 611                     | 1 <10                                            |
| Chromium<br>Iron                                      | 70<br>300                       | -                        | <10                      | <10<br><100              | 816                        | 907<br>227               |                          | 2110<br>1360             | 10<br>-                 | <10<br><100              | -                          | <10                        |                         | 611                     | <10<br><100                                      |
| Sodium                                                | 50000                           | -                        | 92300                    | -                        | 1530000                    | -                        | 1890000                  | -                        | 42500                   | -                        | -                          | 14500                      |                         | 232000                  | -                                                |
| General Chemistry                                     |                                 |                          |                          |                          |                            |                          |                          |                          |                         |                          |                            |                            |                         |                         |                                                  |
| Solids, Total Dissolved                               | 500000                          | -                        | 394000                   | - 1                      | 6860000                    | - 1                      | 5930000                  |                          | 460000                  | - 1                      | - 1                        | 96700                      | 1                       | 1160000                 | - 1                                              |
|                                                       | 250000                          |                          | 211000                   |                          | 2720000                    |                          | 1140000                  | +                        | 124000                  | +                        | t                          | 96800                      |                         | 444000                  | +                                                |

| Sample Date                                                                                                                               | N) CLASS IIA JNDWATER QUALITY TERIA (7/22/2010) ug/L  6000 1 - 1 4 10 300 700 | IRND4_MW-10S JB76271-5 9/10/2014 GW ug/L  ND (2.6) ND (0.21) ND (0.49) ND (0.28) ND (0.31) | IRND4_MW-10S JB76271-5F 9/10/2014 GW-FILTERED ug/L - | IRND4_DUP<br>JB76271-6<br>9/10/2014<br>GW<br>ug/L<br>ND (2.6)<br>ND (0.21) | IRND4_DUP<br>JB76271-6F<br>9/10/2014<br>GW-FILTERED<br>ug/L | IRND4_MW-14SD<br>JB76271-3<br>9/10/2014<br>GW<br>ug/L | IRND4_MW-14SD<br>JB76271-3F<br>9/10/2014<br>GW-FILTERED<br>ug/L | IRND4_MW-14SS<br>JB76271-2<br>9/10/2014<br>GW<br>ug/L | IRND4_MW-14SS<br>JB76271-2F<br>9/10/2014<br>GW-FILTERED | IRND4_MW-5I<br>JB76271-4<br>9/10/2014<br>GW | IRND4_MW-5I<br>JB76271-4F<br>9/10/2014<br>GW-FILTERED | IRND4_MW11I<br>JB76271-1<br>9/10/2014<br>GW | IRND4_MW11I<br>JB76271-1F<br>9/10/2014<br>GW-FILTERED | IRND4_PZ-1S<br>JB76271-9<br>9/10/2014<br>GW | IRND4_P2-1S<br>JB76271-9F<br>9/10/2014<br>GW-FILTERED |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|
| Sample Date Matrix Unit Volatile Organic Compounds (VOCs)  Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane | 6000 1 - 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                      | MD (2.6) ND (0.21) ND (0.49) ND (0.28) ND (0.31)                                           | GW-FILTERED<br>ug/L                                  | GW<br>ug/L<br>ND (2.6)<br>ND (0.21)                                        | GW-FILTERED<br>ug/L                                         | GW                                                    | GW-FILTERED                                                     | GW                                                    | GW-FILTERED                                             |                                             |                                                       |                                             |                                                       |                                             |                                                       |
| Matrix Unit Volatile Organic Compounds (VOCs)  Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane             | 1 1 4 10 300 700                                                              | ND (2.6) ND (0.21) ND (0.49) ND (0.28) ND (0.31)                                           | ug/L                                                 | ug/L  ND (2.6)  ND (0.21)                                                  | ug/L                                                        |                                                       |                                                                 |                                                       |                                                         | GW                                          | GW-FILTERED                                           | GW                                          | GW-FILTERED                                           | GW                                          | GW-FILTERED                                           |
| Volatile Organic Compounds (VOCs)  Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane                         | 1<br>-<br>1<br>4<br>10<br>300<br>700                                          | ND (2.6)<br>ND (0.21)<br>ND (0.49)<br>ND (0.28)<br>ND (0.31)                               | ,                                                    | ND (2.6)<br>ND (0.21)                                                      | ,                                                           | ug/L                                                  | ug/L                                                            |                                                       |                                                         |                                             |                                                       |                                             |                                                       |                                             |                                                       |
| Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane                                                            | 1<br>-<br>1<br>4<br>10<br>300<br>700                                          | ND (0.21)<br>ND (0.49)<br>ND (0.28)<br>ND (0.31)                                           |                                                      | ND (0.21)                                                                  | - 1                                                         |                                                       |                                                                 | ug/L                                                  | ug/L                                                    | ug/L                                        | ug/L                                                  | ug/L                                        | ug/L                                                  | ug/L                                        | ug/L                                                  |
| Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane                                                                    | 1<br>-<br>1<br>4<br>10<br>300<br>700                                          | ND (0.21)<br>ND (0.49)<br>ND (0.28)<br>ND (0.31)                                           | -                                                    | ND (0.21)                                                                  |                                                             | ND (2.6)                                              |                                                                 | ND (2.6)                                              |                                                         | ND (2.6)                                    |                                                       | ND (2.6)                                    | 1 . 1                                                 | ND (2.6)                                    | I - I                                                 |
| Bromodichloromethane Bromoform Bromomethane                                                                                               | 4<br>10<br>300<br>700                                                         | ND (0.28)<br>ND (0.31)                                                                     | -                                                    |                                                                            | -                                                           | ND (0.21)                                             | -                                                               | ND (0.21)                                             | -                                                       | ND (0.21)                                   | -                                                     | ND (0.21)                                   | -                                                     | ND (0.21)                                   | -                                                     |
| Bromoform<br>Bromomethane                                                                                                                 | 4<br>10<br>300<br>700                                                         | ND (0.31)                                                                                  | _                                                    | ND (0.49)                                                                  | =                                                           | ND (0.49)                                             | -                                                               | ND (0.49)                                             | -                                                       | ND (0.49)                                   | -                                                     | ND (0.49)                                   | -                                                     | ND (0.49)                                   | -                                                     |
| Bromomethane                                                                                                                              | 10<br>300<br>700                                                              |                                                                                            |                                                      | ND (0.28)                                                                  | =                                                           | ND (0.28)                                             | -                                                               | ND (0.28)                                             | -                                                       | ND (0.28)                                   | -                                                     | ND (0.28)                                   | -                                                     | ND (0.28)                                   | -                                                     |
|                                                                                                                                           | 300<br>700                                                                    |                                                                                            | -                                                    | ND (0.31)                                                                  | -                                                           | ND (0.31)<br>ND (0.39)                                | -                                                               | ND (0.31)                                             | -                                                       | ND (0.31)<br>ND (0.39)                      | -                                                     | ND (0.31)<br>ND (0.39)                      | -                                                     | ND (0.31)<br>ND (0.39)                      | -                                                     |
|                                                                                                                                           | 700                                                                           | ND (0.39)<br>ND (2.5)                                                                      | -                                                    | ND (0.39)<br>ND (2.5)                                                      | -                                                           | ND (0.39)                                             | -                                                               | ND (0.39)<br>ND (2.5)                                 | -                                                       | ND (0.39)<br>ND (2.5)                       | -                                                     | ND (0.39)<br>ND (2.5)                       | -                                                     | ND (0.39)<br>ND (2.5)                       | + -                                                   |
| Carbon disulfide                                                                                                                          |                                                                               | ND (0.50)                                                                                  | -                                                    | ND (0.50)                                                                  | -                                                           | ND (0.50)                                             | -                                                               | ND (0.50)                                             | -                                                       | ND (0.50)                                   | -                                                     | ND (0.50)                                   | -                                                     | ND (0.50)                                   | -                                                     |
| Carbon tetrachloride                                                                                                                      | 1                                                                             | ND (0.24)                                                                                  | -                                                    | ND (0.24)                                                                  | -                                                           | ND (0.24)                                             | -                                                               | ND (0.24)                                             | -                                                       | ND (0.24)                                   | -                                                     | ND (0.24)                                   | -                                                     | ND (0.24)                                   | -                                                     |
| Chlorobenzene                                                                                                                             | 50                                                                            | ND (0.27)                                                                                  | -                                                    | ND (0.27)                                                                  | -                                                           | ND (0.27)                                             | -                                                               | ND (0.27)                                             | -                                                       | ND (0.27)                                   | -                                                     | ND (0.27)                                   | -                                                     | ND (0.27)                                   | -                                                     |
| Chloroethane<br>Chloroform                                                                                                                | 70                                                                            | ND (0.56)<br>ND (0.20)                                                                     | -                                                    | ND (0.56)<br>ND (0.20)                                                     | -                                                           | ND (0.56)<br>0.29                                     | -                                                               | ND (0.56)<br><b>0.27</b> J                            | -                                                       | ND (0.56)<br>ND (0.20)                      | -                                                     | ND (0.56)<br>0.21                           |                                                       | ND (0.56)<br>ND (0.20)                      | <del>-</del> -                                        |
| Chloromethane                                                                                                                             | -                                                                             | ND (0.33)                                                                                  | -                                                    | ND (0.33)                                                                  | -                                                           | ND (0.33)                                             | -                                                               | ND (0.33)                                             | -                                                       | ND (0.33)                                   | _                                                     | ND (0.33)                                   | -                                                     | ND (0.33)                                   | -                                                     |
| Cyclohexane                                                                                                                               | -                                                                             | ND (0.37)                                                                                  | -                                                    | ND (0.37)                                                                  | -                                                           | ND (0.37)                                             | -                                                               | ND (0.37)                                             | -                                                       | ND (0.37)                                   | -                                                     | ND (0.37)                                   | -                                                     | ND (0.37)                                   | -                                                     |
| 1,2-Dibromo-3-chloropropane                                                                                                               | 0.02                                                                          | ND (1.2)                                                                                   | -                                                    | ND (1.2)                                                                   | -                                                           | ND (1.2)                                              | -                                                               | ND (1.2)                                              | -                                                       | ND (1.2)                                    |                                                       | ND (1.2)                                    |                                                       | ND (1.2)                                    |                                                       |
| Dibromochloromethane                                                                                                                      | 1                                                                             | ND (0.25)                                                                                  | -                                                    | ND (0.25)                                                                  | -                                                           | ND (0.25)                                             | -                                                               | ND (0.25)                                             | -                                                       | ND (0.25)                                   | -                                                     | ND (0.25)                                   | -                                                     | ND (0.25)                                   |                                                       |
| 1,2-Dibromoethane<br>1,2-Dichlorobenzene                                                                                                  | 0.03<br>600                                                                   | ND (0.23)<br>ND (0.16)                                                                     | -                                                    | ND (0.23)<br>ND (0.16)                                                     | -                                                           | ND (0.23)<br>ND (0.16)                                | 1 -                                                             | ND (0.23)<br>ND (0.16)                                | -                                                       | ND (0.23)<br>ND (0.16)                      | <del>                                     </del>      | ND (0.23)<br>ND (0.16)                      |                                                       | ND (0.23)<br>ND (0.16)                      | + -                                                   |
| 1,3-Dichlorobenzene                                                                                                                       | 600                                                                           | ND (0.16)                                                                                  | -                                                    | ND (0.26)                                                                  | -                                                           | ND (0.26)                                             | -                                                               | ND (0.16)                                             | -                                                       | ND (0.16)                                   | -                                                     | ND (0.26)                                   | -                                                     | ND (0.26)                                   | + - +                                                 |
| 1,4-Dichlorobenzene                                                                                                                       | 75                                                                            | ND (0.24)                                                                                  | -                                                    | ND (0.24)                                                                  | -                                                           | ND (0.24)                                             | -                                                               | ND (0.24)                                             | -                                                       | ND (0.24)                                   | -                                                     | ND (0.24)                                   | -                                                     | ND (0.24)                                   | - 1                                                   |
| Dichlorodifluoromethane                                                                                                                   | 1000                                                                          | ND (0.73)                                                                                  | -                                                    | ND (0.73)                                                                  | -                                                           | ND (0.73)                                             |                                                                 | ND (0.73)                                             | -                                                       | ND (0.73)                                   | -                                                     | ND (0.73)                                   | -                                                     | ND (0.73)                                   |                                                       |
| 1,1-Dichloroethane                                                                                                                        | 50                                                                            | ND (0.35)                                                                                  | -                                                    | ND (0.35)                                                                  | -                                                           | ND (0.35)                                             | -                                                               | ND (0.35)                                             | -                                                       | ND (0.35)                                   | -                                                     | ND (0.35)                                   | -                                                     | ND (0.35)                                   | <del>                                     </del>      |
| 1,2-Dichloroethane<br>1,1-Dichloroethene                                                                                                  | 1                                                                             | <b>3.1</b><br>ND (0.50)                                                                    | -                                                    | 3<br>ND (0.50)                                                             | -                                                           | ND (0.30)<br>ND (0.50)                                | 1 1                                                             | ND (0.30)<br>ND (0.50)                                | -                                                       | 1.3<br>ND (0.50)                            | -                                                     | ND (0.30)<br>ND (0.50)                      | -                                                     | 5.3<br>ND (0.50)                            | + - +                                                 |
| cis-1,2-Dichloroethene                                                                                                                    | 70                                                                            | 0.76                                                                                       | J -                                                  | 0.92 J                                                                     | -                                                           | ND (0.33)                                             | -                                                               | ND (0.33)                                             | -                                                       | ND (0.33)                                   | -                                                     | ND (0.33)                                   | -                                                     | ND (0.33)                                   | + - +                                                 |
| trans-1,2-Dichloroethene                                                                                                                  | 100                                                                           | ND (0.51)                                                                                  |                                                      | ND (0.51)                                                                  | <u>-</u>                                                    | ND (0.51)                                             | <u> </u>                                                        | ND (0.51)                                             |                                                         | ND (0.51)                                   |                                                       | ND (0.51)                                   |                                                       | ND (0.51)                                   | -                                                     |
| 1,2-Dichloropropane                                                                                                                       | 1                                                                             | ND (0.43)                                                                                  | -                                                    | ND (0.43)                                                                  | -                                                           | ND (0.43)                                             | -                                                               | ND (0.43)                                             | -                                                       | ND (0.43)                                   | -                                                     | ND (0.43)                                   | -                                                     | ND (0.43)                                   |                                                       |
| cis-1,3-Dichloropropene                                                                                                                   | -                                                                             | ND (0.28)                                                                                  | -                                                    | ND (0.28)                                                                  | -                                                           | ND (0.28)                                             | -                                                               | ND (0.28)                                             | -                                                       | ND (0.28)                                   | -                                                     | ND (0.28)                                   | -                                                     | ND (0.28)                                   | <del>                                     </del>      |
| trans-1,3-Dichloropropene<br>1,4-Dioxane                                                                                                  | -                                                                             | ND (0.32)<br>ND (51)                                                                       | -                                                    | ND (0.32)<br>ND (51)                                                       | -                                                           | ND (0.32)<br>ND (51)                                  | -                                                               | ND (0.32)<br>ND (51)                                  | -                                                       | ND (0.32)<br>ND (51)                        | -                                                     | ND (0.32)<br>ND (51)                        | -                                                     | ND (0.32)<br>ND (51)                        | + -                                                   |
| Ethylbenzene                                                                                                                              | 700                                                                           | ND (51)<br>ND (0.40)                                                                       | -                                                    | ND (0.40)                                                                  | -                                                           | ND (51)<br>ND (0.40)                                  | -                                                               | ND (51)<br>ND (0.40)                                  | -                                                       | ND (51)<br>ND (0.40)                        | -                                                     | ND (51)<br>ND (0.40)                        | -                                                     | ND (51)<br>ND (0.40)                        | + -                                                   |
| Freon 113                                                                                                                                 |                                                                               | ND (0.45)                                                                                  |                                                      | ND (0.45)                                                                  | <u>-</u>                                                    | ND (0.45)                                             | <u> </u>                                                        | ND (0.45)                                             |                                                         | ND (0.45)                                   |                                                       | ND (0.45)                                   |                                                       | ND (0.45)                                   | <u> </u>                                              |
| 2-Hexanone                                                                                                                                | -                                                                             | ND (1.7)                                                                                   | -                                                    | ND (1.7)                                                                   | -                                                           | ND (1.7)                                              | 1                                                               | ND (1.7)                                              | -                                                       | ND (1.7)                                    |                                                       | ND (1.7)                                    | -                                                     | ND (1.7)                                    |                                                       |
| Isopropylbenzene Mothyl Acotato                                                                                                           | 700                                                                           | ND (0.26)                                                                                  | -                                                    | ND (0.26)                                                                  | -                                                           | ND (0.26)                                             | 1 -                                                             | ND (0.26)                                             | -                                                       | ND (0.26)                                   | -                                                     | ND (0.26)                                   | -                                                     | ND (0.26)                                   | +                                                     |
| Methyl Acetate Methylcyclohexane                                                                                                          | 7000                                                                          | ND (3.1)<br>ND (0.22)                                                                      | -                                                    | ND (3.1)<br>ND (0.22)                                                      | -                                                           | ND (3.1)<br>ND (0.22)                                 | -                                                               | ND (3.1)<br>ND (0.22)                                 | -                                                       | ND (3.1)<br>ND (0.22)                       | -                                                     | ND (3.1)<br>ND (0.22)                       | -                                                     | ND (3.1)<br>ND (0.22)                       | -                                                     |
| Methyl Tert Butyl Ether                                                                                                                   | 70                                                                            | ND (0.26)                                                                                  | -                                                    | ND (0.26)                                                                  | -                                                           | ND (0.26)                                             | -                                                               | ND (0.26)                                             | -                                                       | ND (0.26)                                   | -                                                     | ND (0.26)                                   | -                                                     | ND (0.26)                                   |                                                       |
| 4-Methyl-2-pentanone(MIBK)                                                                                                                | -                                                                             | ND (1.1)                                                                                   | -                                                    | ND (1.1)                                                                   | =                                                           | ND (1.1)                                              | -                                                               | ND (1.1)                                              | -                                                       | ND (1.1)                                    | -                                                     | ND (1.1)                                    | -                                                     | ND (1.1)                                    | -                                                     |
| Methylene chloride<br>Styrene                                                                                                             | 3<br>100                                                                      | ND (0.81)<br>ND (0.26)                                                                     | -                                                    | ND (0.81)<br>ND (0.26)                                                     | -                                                           | ND (0.81)<br>ND (0.26)                                | -                                                               | ND (0.81)<br>ND (0.26)                                | -                                                       | ND (0.81)<br>ND (0.26)                      | -                                                     | ND (0.81)<br>ND (0.26)                      | -                                                     | ND (0.81)<br>ND (0.26)                      | <del>-</del>                                          |
| 1,1,2,2-Tetrachloroethane                                                                                                                 | 1                                                                             | ND (0.39)                                                                                  |                                                      | ND (0.39)                                                                  | <u>-</u>                                                    | ND (0.39)                                             | <u> </u>                                                        | ND (0.39)                                             |                                                         | ND (0.39)                                   |                                                       | ND (0.39)                                   |                                                       | ND (0.39)                                   |                                                       |
| Tetrachloroethene                                                                                                                         | 1                                                                             | 1                                                                                          | -                                                    |                                                                            | -                                                           | ND (0.35)                                             | -                                                               | ND (0.35)                                             | -                                                       | ND (0.35)                                   | -                                                     | ND (0.35)                                   | -                                                     | ND (0.35)                                   |                                                       |
| Toluene<br>1,2,3-Trichlorobenzene                                                                                                         | - 600                                                                         | ND (0.22)<br>ND (0.26)                                                                     | -                                                    | ND (0.22)<br>ND (0.26)                                                     | -                                                           | ND (0.22)<br>ND (0.26)                                | -                                                               | ND (0.22)<br>ND (0.26)                                | -                                                       | ND (0.22)<br>ND (0.26)                      | -                                                     | ND (0.22)<br>ND (0.26)                      |                                                       | ND (0.22)<br>ND (0.26)                      | + - +                                                 |
| 1,2,4-Trichlorobenzene                                                                                                                    | 9                                                                             | ND (0.22)                                                                                  | -                                                    | ND (0.22)                                                                  | -                                                           | ND (0.22)                                             | - 1                                                             | ND (0.22)                                             | -                                                       | ND (0.22)                                   | -                                                     | ND (0.22)                                   | -                                                     | ND (0.22)                                   |                                                       |
| 1,1,1-Trichloroethane                                                                                                                     | 30                                                                            | ND (0.32)                                                                                  | -                                                    | ND (0.32)                                                                  | -                                                           | ND (0.32)                                             | -                                                               | ND (0.32)                                             | -                                                       | ND (0.32)                                   | -                                                     | 0.6                                         | -                                                     | ND (0.32)                                   |                                                       |
| 1,1,2-Trichloroethane Trichloroethene                                                                                                     | 3<br>1                                                                        | ND (0.28)<br>1.5                                                                           | -                                                    | ND (0.28)<br>1.5                                                           | -                                                           | ND (0.28)<br>ND (0.25)                                | -                                                               | ND (0.28)<br>ND (0.25)                                | -                                                       | ND (0.28)<br><b>0.27</b> J                  | -                                                     | ND (0.28)<br>ND (0.25)                      | -                                                     | ND (0.28)                                   | + - +                                                 |
| Trichlorofluoromethane                                                                                                                    | 2000                                                                          | ND (0.28)                                                                                  | -                                                    | ND (0.28)                                                                  | -                                                           | ND (0.28)                                             | -                                                               | ND (0.28)                                             | -                                                       | ND (0.28)                                   | -                                                     | ND (0.28)                                   | -                                                     | ND (0.28)                                   |                                                       |
| Vinyl chloride                                                                                                                            | 1                                                                             | ND (0.17)                                                                                  | -                                                    | ND (0.17)                                                                  | -                                                           | ND (0.17)                                             | <u> </u>                                                        | ND (0.17)                                             | -                                                       | ND (0.17)                                   |                                                       | ND (0.17)                                   |                                                       | ND (0.17)                                   | <del>                                     </del>      |
| m,p-Xylene<br>o-Xylene                                                                                                                    | -                                                                             | ND (0.45)<br><b>0.27</b>                                                                   | 1 -<br>-                                             | ND (0.45)<br>0.31 J                                                        | -                                                           | ND (0.45)<br>ND (0.20)                                | <del>                                     </del>                | ND (0.45)<br>ND (0.20)                                |                                                         | ND (0.45)<br>ND (0.20)                      |                                                       | ND (0.45)<br>ND (0.20)                      |                                                       | ND (0.45)<br>ND (0.20)                      | +                                                     |
| Xylene (total)                                                                                                                            | 1000                                                                          | 0.51                                                                                       | J -                                                  | 0.53 J                                                                     |                                                             | ND (0.20)                                             | -                                                               | ND (0.20)                                             | -                                                       | ND (0.20)                                   | -                                                     | ND (0.20)                                   | -                                                     | ND (0.20)                                   |                                                       |
| Total VOCs                                                                                                                                | -                                                                             | 6.87                                                                                       |                                                      | 6.86                                                                       |                                                             | 0.29                                                  | 1                                                               | 0.27                                                  |                                                         | 1.57                                        |                                                       | 0.81                                        |                                                       | 7.3                                         |                                                       |
| GC/MS Volatile TIC                                                                                                                        |                                                                               |                                                                                            |                                                      |                                                                            |                                                             |                                                       |                                                                 |                                                       |                                                         |                                             |                                                       |                                             |                                                       |                                             |                                                       |
| Total TIC, Volatile                                                                                                                       | -                                                                             | 0                                                                                          | -                                                    | 0                                                                          | -                                                           | 0                                                     | -                                                               | 0                                                     | -                                                       |                                             | -                                                     | 0                                           | -                                                     | 0                                           | <u> </u>                                              |
| Total Alkanes                                                                                                                             | -                                                                             | 0                                                                                          | -                                                    | 0                                                                          | -                                                           | 0                                                     | -                                                               | 0                                                     | -                                                       | 0                                           | -                                                     | 0                                           | -                                                     | 0                                           | -                                                     |
| Metals Analysis                                                                                                                           |                                                                               |                                                                                            |                                                      |                                                                            |                                                             |                                                       |                                                                 |                                                       |                                                         |                                             |                                                       |                                             |                                                       |                                             |                                                       |
| Chromium                                                                                                                                  | 70                                                                            | 24.7                                                                                       | 12.2                                                 | 23.6                                                                       | 11.7                                                        | <10                                                   | <10                                                             | <10                                                   | <10                                                     | <10                                         | <10                                                   | <10                                         | <10                                                   | 31.6                                        | 17.9                                                  |
| Iron                                                                                                                                      | 300                                                                           | -                                                                                          | <100                                                 | -                                                                          | <100                                                        | -                                                     | <100                                                            | -                                                     | <100                                                    | -                                           | <100                                                  | -                                           | <100                                                  |                                             | 146                                                   |
| Sodium                                                                                                                                    | 50000                                                                         | 43000                                                                                      | -                                                    | 37800                                                                      | -                                                           | 58000                                                 | -                                                               | 61000                                                 | -                                                       | <10000                                      | -                                                     | <10000                                      | -                                                     | 71300                                       | -                                                     |
| General Chemistry                                                                                                                         |                                                                               |                                                                                            |                                                      |                                                                            |                                                             |                                                       |                                                                 |                                                       |                                                         |                                             |                                                       |                                             |                                                       |                                             |                                                       |
| Solids, Total Dissolved                                                                                                                   | 500000                                                                        | 383000                                                                                     |                                                      | 400000                                                                     | -                                                           | 376000                                                |                                                                 | 416000                                                | -                                                       | 50000                                       | -                                                     | 62000                                       | -                                                     | 475000                                      | -                                                     |
| Sulfate                                                                                                                                   | 250000                                                                        | 171000                                                                                     | =                                                    | 176000                                                                     | -                                                           | 101000                                                | -                                                               | 117000                                                | -                                                       | 68300                                       | -                                                     | 63800                                       | -                                                     | 101000                                      | =                                                     |

# Attachment 3 Data Validation Results

TO: J. Levesque cc:

**FROM:** K. Storne

**RE:** Evor Phillips Leasing Company (EPLC)Superfund Site, OU3

Site Groundwater RA Baseline Sampling Event, Data

Validation Report

**FILE:** 19726/51308.015.100

**DATE:** June 04, 2015

This report presents the data validation results performed for environmental samples collected in March 2015 for the 2015 Annual/Baseline Groundwater Monitoring Event as part of the OU3-Site Groundwater Remedial Action at the Evor Phillips Leasing Company (EPLC) Superfund Site in Old Bridge Township, New Jersey.

### **SAMPLE AND VALIDATION SUMMARY**

The environmental samples collected for this effort consisted of groundwater samples, matrix spike/matrix spike duplicates, field duplicate, field blanks and trip blanks. Samples were analyzed by Accutest Laboratories of Dayton, New Jersey (Accutest New Jersey).

The laboratory utilized the methods listed in Table 1 for sample analyses.

| Table 1. Analytical methods and | references                     |           |
|---------------------------------|--------------------------------|-----------|
| Parameter                       | Methods                        | Reference |
| VOCs                            | USEPA Methods8000C/5030B/8260B | 1         |
| Metals                          | USEPA Methods 3010A/6010C      | 2         |
| Sulfate                         | USEPA Method 9056A/300.0       | 2/4       |
| TDS                             | SM20 2540C                     | 3         |

### Note:

VOCs indicates volatile organic compounds.

TDS indicates total dissolved solids.

- 1. United States Environmental Protection Agency (USEPA). 2004. *Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, SW-846,* 3rd Edition, Update IIIB. Washington D.C.
- 2. USEPA. 2007. Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, SW-846, 3rd Edition, Update IV. Washington D.C.
- 3. AWWA, APHA, WEF. 1998. Standard Methods for the Examination of Water and Wastewater, 20th Edition. Washington, D.C.
- 4. USEPA. 1993a. Methods for the Determination of Inorganic Substances in Environmental Samples, EPA-600/R-93/100. Washington, D.C.

The laboratory data packages included summary forms for quality control analysis and supportive raw data.

The samples submitted for data review are summarized in the attached Table 2. Table 3 presents the specific data validation approach applied to data generated. Table 4 presents the Laboratory quality assurance/quality control (QA/QC) analyses definitions.

In accordance with the approved RDR/RAWP, full validation was performed on 10 percent of the samples collected and submitted for validation. This consisted of a review of data summary forms and raw analytical data provided in the data packages. Partial validation was performed for the remaining data. Partial data quality review consists of a review of only analytical QC summary forms that are included in the data package. The forms and the information contained on the forms are not evaluated for accuracy or completeness during partial data validation.

The analytical data generated for this investigation were evaluated by O'Brien & Gere using the QA/QC criteria established in the methods utilized by the laboratories and the following document:

 O'Brien & Gere. 2014. Uniform Federal Policy Quality Assurance Project Plan, Operable Unit 3 (OU3)- Site Groundwater Evor Phillips Leasing Company (EPLC) Superfund Site, Old Bridge Township, New Jersey. Edison, New Jersey. (QAPP)



Data affected by excursions from these criteria were qualified using professional judgment and the general validation approach provided in the following validation guideline documents, modified to reflect the requirements of the methods utilized by the laboratories:

- New Jersey Department of Environmental Protection (NJDEP). 2001a. Standard Operating Procedure (SOP) for Analytical Data Validation of Target Analyte List (TAL) – Inorganics, SOP No. 5.A.2. Trenton, New Jersey
- NJDEP. 2001b. Standard Operating Procedures for the Quality Assurance Data Validation of Analytical Deliverables TCL- Organics (based on the USEPA SOW OLM04.2 with Revisions), SOP No. 5.A.13. Trenton, New Jersey

The application of these validation guidelines has been modified to reflect the requirements of the methods utilized by the laboratory.

In accordance with the NJDEP guidance, and utilizing professional judgment, the following qualifiers are used in this type of data review:

- "U" Indicates that the analyte was analyzed for, but was not detected.
- "J" Indicates that the result should be considered to be an estimated value. This qualifier is used when the data validation process identifies a deficiency in the data generation process.
- "UJ" Indicates that the sample-specific reporting limit for the analyte in this sample should be considered approximate. This qualifier is used when the data validation process identifies a deficiency in the data generation process.
- "R" Indicates that the reporting limit or sample result has been determined to be unusable due to a major deficiency in the data generation process. The data should not be used for any qualitative or quantitative purposes.

In addition, in accordance with the NJDEP guidance, the following single word descriptors were added to analyte results if the reported analyte required a quality assurance action.

- Qualify (Q) used when the results of a given analyte in a sample do not meet all QA/QC criteria but the deficiencies are not severe enough to warrant data rejection.
- Negate (N) used when the presence of a given analyte in a sample can be attributed to the laboratory/field introduced contamination.
- Reject (R) used when the results of a given analyte in a sample do not meet all QA/QC criteria so that the
  qualitative presence and/or quantitation of that analyte in the sample cannot be determined with any
  degree of confidence.

Footnotes, based on the NJDEP validation guidance, were applied to each qualifier to define the type of excursion that affected the sample result, resulting in the qualification of the data. The footnote used in this validation is presented in Table 5 below.



| Table 5. Validation Footnote Definitions |                                                                                                 |
|------------------------------------------|-------------------------------------------------------------------------------------------------|
| Footnote                                 | Type of Excursion                                                                               |
| 39                                       | The reported concentration is quantitative qualified because the concentration is below the RL. |

The following parameters were evaluated, where applicable:

- QAPP compliance
- Documentation completeness
- · Chain-of-custody record
- Sample collection
- Sample preservation
- Holding times
- Calibrations (Full validation only)
- Blank analysis
- Matrix spike/ matrix spike duplicate (MS/MSD) analysis
- Laboratory Control Sample (LCS) analysis
- Field duplicate analysis
- Surrogate recovery
- Internal standards performance
- Gas chromatography/mass spectrometry (GC/MS) instrument performance check (Full validation only)
- Inductively coupled plasma (ICP) interference check analysis (Full validation only)
- ICP serial dilution analysis
- Laboratory duplicate analysis
- Target analyte quantitation, identification, and quantitation limits (QLs) (Full validation only)

The following sections of this memorandum present the results of the comparison of the analytical data to the QA/QC criteria specified above.

### CHAIN OF CUSTODY RECORDS AND SAMPLE COLLECTION

For samples collected 3/4/15 to 3/10/15, the sample collection dates were not documented for the complete list of samples on the record. However, the collection date was included in the sample identification.

Although the record for 2BASE\_ISCO-MW5\_03092015 only listed VOC analysis, sample containers were also submitted for metal, TDS, and sulfate analyses. This revision was confirmed by O'Brien & Gere on 3/12/15.

A field duplicate sample was not submitted for total and dissolved metal, TDS and sulfate analyses.

### **VOC DATA EVALUATION SUMMARY**

The following QA/QC parameters were found to meet method and validation criteria or did not result in additional qualification of sample results:

- QAPP compliance
- Documentation completeness
- Sample preservation



- Holding times
- Calibrations (Full validation only)
- Blank analysis
- MS/MSD analysis
- LCS analysis
- Field duplicate analysis
- Surrogate recovery
- Internal standards performance
- GC/MS instrument performance check (Full validation only)
- Target analyte identification

Excursions from method or validation criteria were not identified during the validation process. Additional observations are described below.

### I. Target analyte quantitation and detection limits

Sample results with concentrations greater than the method detection limits (MDL) but less than the QL were flagged as approximate (J) by the laboratory. This flag was retained during the validation process to indicate the data is approximate (J, 39).

### METALS, SULFATE and TDS DATA EVALUATION SUMMARY

The following QA/QC parameters were found to meet method and validation criteria or did not result in additional qualification of sample results (where applicable):

- QAPP compliance
- Documentation completeness
- Sample preservation
- Holding times
- Calibrations (Full validation only)
- Blank analysis
- MS/MSD analysis
- LCS analysis
- ICP interference check analysis (Full validation only)
- ICP serial dilution analysis
- Laboratory duplicate analysis

Excursions from method or validation criteria were not identified during the validation process. Additional observations are described below.

### I. Field duplicate analysis

A field duplicate sample was not submitted for total and dissolved metal, TDS and sulfate analyses. Therefore, field precision could not be evaluated for these analyses.

### II. Target analyte quantitation and QLs

Results for metals and inorganics were reported to the QL concentration.



Metals and sulfate were reported using dilutions due to elevated concentrations of target analytes.

### **DATA USABILITY**

The data from the samples on Table 2 were evaluated based on QA/QC criteria established by the methods listed in Table 1 and the data validation approach as described in Table 3.

Major deficiencies in the data generation process would have resulted in data points being rejected, indicating that the data are considered unusable for either quantitative or qualitative purposes. Major deficiencies were not identified during the validation process. Minor deficiencies in the data generation process would have resulted in sample data being characterized as approximate or non-detected. Minor deficiencies were not identified during the validation process.

A discussion of the data quality with regard to the data usability parameters follows:

<u>Precision</u>: Data were not rejected for precision excursions.

<u>Sensitivity</u>: Sensitivity is established by QLs, which represent measurable concentrations of analytes which can be determined with a designated level of confidence, that meet project requirements. Dilutions were performed for analyses due to elevated concentrations of target analytes in the samples.

<u>Accuracy</u>: Data were not rejected for accuracy excursions.

Representativeness: Data were not rejected for representativeness excursions.

<u>Comparability</u>: Data usability with respect to comparability is 100 percent, as standardized analytical methods, QLs, reference materials, and data deliverables were used throughout the data generation process for this project.

<u>Completeness</u>: For the samples submitted for data validation, overall data usability with respect to completeness 100 percent for the data, considering the complete data set; therefore, the usability met the QAPP requirement of usable for qualitative and quantitative purposes.



Table 2. Sample Cross Reference Table

Samples collected and submitted for data validation

| I ahawatawa Nama | Data Callagted | Client Identification                           | Laboratory                | Matrix      | Analysis Resussated        |
|------------------|----------------|-------------------------------------------------|---------------------------|-------------|----------------------------|
| Laboratory Name  |                | Client Identification                           | Identification            |             | Analysis Requested         |
| Accutest         | 3/4/2015       | 2BASE_WCC-3M_03042015                           | JB89329-1                 | Groundwater | VOCs                       |
| Accutest         | 3/4/2015       | 2BASE_WCC-1M_03042015                           | JB89329-2                 | Groundwater | VOCs                       |
| Accutest         | 3/4/2015       | 2BASE_WCC-1S_03042015                           | JB89329-3                 | Groundwater | VOCs                       |
| Accutest         | 3/4/2015       | 2BASE_MW-15D_03042015                           | JB89329-4                 | Groundwater | VOCs                       |
| Accutest         | 3/4/2015       | 2BASE_DUP_03042015[2BASE_WCC-3M_03042015]       | JB89329-5                 | Groundwater | VOCs                       |
| Accutest         | 3/4/2015       | 2BASE_MW-19S_03042015                           | JB89329-6                 | Groundwater | VOCs                       |
| Accutest         | 3/4/2015       | 2BASE_MW-9I_03042015                            | JB89329-7                 | Groundwater | VOCs                       |
| Accutest         | 3/4/2015       | 2BASE_MW-11I_03042015                           | JB89329-8                 | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest         | 3/4/2015       | 2BASE_MW-11I_03042015-FILTERED                  | JB89329-8F                | Groundwater | Dissolved Metals           |
| Accutest         | 3/4/2015       | 2BASE_MW-5I_03042015                            | JB89329-9                 | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest         | 3/4/2015       | 2BASE_MW-5I_03042015-FILTERED                   | JB89329-9F                | Groundwater | Dissolved Metals           |
| Accutest         | 3/4/2015       | 2BASE_IW1-DR1_03042015                          | JB89329-10                | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest         | 3/4/2015       | 2BASE_IW1-DR1_03042015-FILTERED                 | JB89329-10F               | Groundwater | Dissolved Metals           |
| Accutest         | 3/4/2015       | 2BASE_PZ-1S_03042015                            | JB89329-11                | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest         | 3/4/2015       | 2BASE_PZ-1S_03042015-FILTERED                   | JB89329-11F               | Groundwater | Dissolved Metals           |
| Accutest         | 3/4/2015       | 2BASE_MW-24_03042015                            | JB89329-12                | Groundwater | VOCs                       |
| Accutest         | 3/4/2015       | 2BASE_TB_03042015                               | JB89329-13                | Aqueous     | VOCs                       |
| Accutest         | 3/6/2015       | 2BASE_ISCO-MW3_03062015                         | JB89329-14                | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest         | 3/6/2015       | 2BASE_ISCO-MW3_03062015-FILTERED                | JB89329-14F               | Groundwater | Dissolved Metals           |
| Accutest         | 3/6/2015       | 2BASE IW1-BT2 03062015                          | JB89329-15                | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest         | 3/6/2015       | 2BASE IW1-BT2 03062015-FILTERED                 | JB89329-15F               | Groundwater | Dissolved Metals           |
| Accutest         | 3/6/2015       | 2BASE ISCO-MW8 03062015                         | JB89329-16                | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest         | 3/6/2015       | 2BASE ISCO-MW8 03062015-FILTERED                | JB89329-16F               | Groundwater | Dissolved Metals           |
| Accutest         | 3/6/2015       | 2BASE IW-4S 03062015, MS/MSD                    | JB89329-17                | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest         | 3/6/2015       | 2BASE IW-4S 03062015-FILTERED, MS/MSD           | JB89329-17F               | Groundwater | Dissolved Metals           |
| Accutest         | 3/6/2015       | 2BASE ISCO-MW6 03062015                         | JB89329-18                | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest         | 3/6/2015       | 2BASE ISCO-MW6 03062015-FILTERED                | JB89329-18F               | Groundwater | Dissolved Metals           |
| Accutest         | 3/6/2015       | 2BASE ISCO-MW7 03062015                         | JB89329-19                | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest         | 3/6/2015       | 2BASE ISCO-MW7_03062015-FILTERED                | JB89329-19F               | Groundwater | Dissolved Metals           |
| Accutest         | 3/6/2015       | 2BASE ISCO-MW2 03062015                         | JB89329-20                | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest         | 3/6/2015       | 2BASE ISCO-MW2 03062015-FILTERED                | JB89329-20F               | Groundwater | Dissolved Metals           |
| Accutest         | 3/6/2015       | 2BASE ISCO-MW4 03062015                         | JB89329-201<br>JB89329-21 | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest         | 3/6/2015       | 2BASE ISCO-MW4_03062015-FILTERED                | JB89329-21F               | Groundwater | Dissolved Metals           |
| Accutest         | 3/6/2015       | 2BASE FB 03062015                               | JB89329-21                | Aqueous     | VOCs, Metals, Sulfate, TDS |
| Accutest         | 3/6/2015       | 2BASE FB 03062015-FILTERED                      | JB89329-22F               | Aqueous     | Dissolved Metals           |
| Accutest         | 3/6/2015       | 2BASE_FB_03062015<br>2BASE_TB_03062015          | JB89329-23                | Aqueous     | VOCs                       |
| Accutest         | 3/9/2015       | 2BASE_ISCO-MW1_03092015                         |                           | Groundwater | VOCs, Metals, Sulfate, TDS |
|                  | 3/9/2015       |                                                 | JB89329-24                | Groundwater |                            |
| Accutest         |                | 2BASE_ISCO-MW1_03092015-FILTERED                | JB89329-24F               |             | Dissolved Metals VOCs      |
| Accutest         | 3/9/2015       | 2BASE_MW-6S_03092015<br>2BASE_ISCO-MW5_03092015 | JB89329-25<br>JB89329-26  | Groundwater |                            |
| Accutest         | 3/9/2015       |                                                 |                           | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest         | 3/9/2015       | 2BASE_ISCO-MW5_03092015-FILTERED                | JB89329-26F               | Groundwater | Dissolved Metals           |
| Accutest         | 3/9/2015       | 2BASE_MW-23D_03092015                           | JB89329-27                | Groundwater | VOCs                       |
| Accutest         | 3/9/2015       | 2BASE_MW-23S_03092015                           | JB89329-28                | Groundwater | VOCs                       |
| Accutest         | 3/9/2015       | 2BASE_MW-23I_03092015                           | JB89329-29                | Groundwater | VOCs                       |
| Accutest         | 3/9/2015       | 2BASE_ISCO-MW9_03092015                         | JB89329-30                | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest         | 3/9/2015       | 2BASE_ISCO-MW9_03092015-FILTERED                | JB89329-30F               | Groundwater | Dissolved Metals           |
| Accutest         | 3/9/2015       | 2BASE_MW-28_03092015                            | JB89329-31                | Groundwater | VOCs                       |
| Accutest         | 3/9/2015       | 2BASE_FB_03092015                               | JB89329-32                | Aqueous     | VOCs, Metals, Sulfate, TDS |
| Accutest         | 3/9/2015       | 2BASE_FB_03092015-FILTERED                      | JB89329-32F               | Aqueous     | Dissolved Metals           |
| Accutest         | 3/9/2015       | 2BASE_TB_03092015                               | JB89329-33                | Aqueous     | VOCs                       |
| Accutest         | 3/10/2015      | 2BASE_EW-3_03102015, MS/MSD                     | JB89329-34                | Groundwater | VOCs                       |
| Accutest         | 3/10/2015      | 2BASE_MW-14SS_03102015                          | JB89329-35                | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest         | 3/10/2015      | 2BASE_MW-14SS_03102015-FILTERED                 | JB89329-35F               | Groundwater | Dissolved Metals           |
| Accutest         | 3/10/2015      | 2BASE_MW-14SD_03102015                          | JB89329-36                | Groundwater | VOCs, Metals, Sulfate, TDS |
| Accutest         | 3/10/2015      | 2BASE_MW-14SD_03102015-FILTERED                 | JB89329-36F               | Groundwater | Dissolved Metals           |
| Accutest         | 3/10/2015      | 2BASE_MW-10S_03102015                           | JB89329-37                | Groundwater | VOCs, Metals, Sulfate, TDS |
|                  |                |                                                 | JB89329-37F               | Groundwater | Dissolved Metals           |

Note

Accutest indicates Accutest Laboratories of Dayton, New Jersey.

VOCs indicates volatile organic compounds.

TDS indicates total dissolved solids.

MS/MSD indicates matrix spike/matrix spike duplicate.

DUP indicates field duplicate.

The sample identification utilized for field duplicate is shown in brackets.

TB indicates trip blank.

FB indicates field blank.

### Table 3 - O'Brien & Gere data validation approach using NJDEP data validation guidelines

### General Validation Approach

Data evaluation is based on QA/QC criteria established the methods utilized by the laboratory and quality plans developed for the project.

The NJDEP data validation guidance applies to data generated using USEPA CLP methods. This project was not analyzed using CLP methods. Therefore, data affected by excursions from criteria presented in the methods and quality plan are qualified using professional judgment with some consideration of the general guidance provided in the following documents:

- New Jersey Department of Environmental Protection (NJDEP). 2001a. Standard Operating Procedures for the Quality
  Assurance Data Validation of Analytical Deliverables TCL- Organics (based on the USEPA SOW OLM04.2 with Revisions),
  SOP No. 5.A.13. Trenton, New Jersey; and
- NJDEP. 2001b. Standard Operating Procedure (SOP) for Analytical Data Validation of Target Analyte List (TAL) Inorganics, SOP No. 5.A.2. Trenton, New Jersey.

The following qualifiers are applied to data:

""U" Indicates that the analyte was analyzed for, but was not detected.

"J" Indicates that the result should be considered to be an estimated value. This qualifier is used when the data validation process identifies a deficiency in the data generation process.

"UJ" Indicates that the sample-specific reporting limit for the analyte in this sample should be considered approximate. This qualifier is used when the data validation process identifies a deficiency in the data generation process.

"R" Indicates that the reporting limit or sample result has been determined to be unusable due to a major deficiency in the data generation process. The data should not be used for any qualitative or quantitative purposes.

In addition, in accordance with the NJDEP guidance, the following single word descriptors were added to analyte results if the reported analyte required a quality assurance action.

- Qualify (Q) used when the results of a given analyte in a sample do not meet all QA/QC criteria but the deficiencies are not severe enough to warrant data rejection.
- Negate (N) used when the presence of a given analyte in a sample can be attributed to the laboratory/field introduced contamination.
- Reject (R) used when the results of a given analyte in a sample do not meet all QA/QC criteria so that the qualitative
  presence and/or quantitation of that analyte in the sample cannot be determined with any degree of confidence.

Footnotes are applied to each qualifier to define the type of excursion that affected the sample result, resulting in the qualification of the data, as listed on this table.

Data are evaluated using the QA/QC criteria (including holding times and calibration) established in the applicable Quality Assurance Project Plan (QAPP), analytical methods and laboratory established control limits. Since the NJDEP validation guidelines apply to data generated using CLP methods, the application of these validation guidelines is modified to reflect method requirements, where applicable, since non-CLP methods are used in the analysis of samples.

A full QA/QC review is performed for 10 percent of the aqueous and solid samples, including a review of data summary forms and raw analytical data that were provided by the laboratory in the data package documentation. Partial review is performed for the remaining environmental samples submitted for data validation for this sampling event. Partial review consists of a review of the data summary forms. During the partial validation, only summary QA/QC forms are evaluated. The forms and the information contained on the forms are not evaluated for accuracy or completeness during the partial validation process.

The validation approach taken by O'Brien & Gere is a conservative one; qualifiers are applied to sample data to indicate both major and minor excursions. In this way, data associated with any type of excursion are identified to the data user. Major excursions will result in data being rejected, indicating that the data are considered unusable for either quantitative or qualitative purposes. Minor excursions will result in sample data being qualified as approximate that are otherwise usable for quantitative or qualitative purposes.

Excursions are subdivided into excursions that are within the laboratory's control and those that are out of the laboratory's control. Excursions involving laboratory control sample recovery, calibration response, method blank excursions, low or high spike recovery due to inaccurate spiking solutions or poor instrument response, holding times, interpretation errors, and quantitation errors are within the control of the laboratory. Excursions resulting from matrix spike recovery, serial dilution recovery, surrogate, and internal standard performance due to matrix interference from the matrix of the samples are examples of those excursions that are not within the laboratory's control if the laboratory has followed proper method control procedures, including performing appropriate cleanup techniques.

### **Parameter Type**

### **Approach in Applying Data Validation Qualifiers**

### Sample collection information-Cooler Temperature

Results for samples submitted for organic and inorganic analyses impacted by cooler temperatures of greater than  $10^{\circ}$ C are noted in the report.\* Qualifiers are not applied to data.

Sample collection information-Percent Solids

Results for samples submitted for organic and inorganic analyses that are impacted by percent solids of 50 percent are noted in the report.\* Qualifiers are not applied to data.

VOCs by USEPA Method 8260B Calibration Evaluation VOC target analytes are evaluated using the criteria of 15%RSD or correlation coefficient criteria of 0.990 for initial calibration curves. Calibration verifications are evaluated using a criterion of 20%D for all target compounds. Initial calibrations and calibration verifications were also evaluated using the criterion of a RF value of greater than or equal to a value of 0.01 for ketones and 0.05 for the remaining target analytes. If analyzed, the second-source standard (ICV) is evaluated using laboratory control limits or 70% to 130% recovery.

O'BRIEN 5 GERE
www.obg.com

| Table 3 - O'Brien & Ger                     | e data validation approach using NJDEP data validation guidelines                                                                                                                         |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VOCs by USEPA                               | VOC target analytes are evaluated using the criteria of 20%RSD or correlation coefficient criteria of 0.990 for initial calibration                                                       |
| Method 524.2                                | curves. Calibration verifications are evaluated using a criterion of 30%D for all target compounds. Initial calibrations and                                                              |
| Calibration Evaluation                      | calibration verifications were also evaluated using the criterion of a RF value of greater than or equal to a value of 0.05. If                                                           |
|                                             | analyzed, the second-source standard (ICV) is evaluated using laboratory control limits or 70% to 130% recovery.                                                                          |
| VOCs by USEPA                               | VOC target analytes are evaluated using the criteria of 35 percent relative standard deviation (%RSD) or                                                                                  |
| Method 624                                  | correlation coefficient criteria of 0.990 for initial calibration curves. Calibration verifications are evaluated using                                                                   |
| Calibration                                 | criteria presented in Table 5 of USEPA Method 624 and 50 percent difference (%D) for the remaining target                                                                                 |
| Evaluation                                  | analytes not listed in the method. Initial calibrations and calibration verifications are also evaluated using a                                                                          |
| 21010011                                    | response factor (RF) criteria of greater than or equal to 0.05 for target analytes. A minimum of a RF pf 0.01 is                                                                          |
|                                             | required for ketones and poor-purging analytes. If analyzed, the second-source standard or low standard is                                                                                |
|                                             | evaluated using a 30% recovery or the laboratory control limits.                                                                                                                          |
| CVOCa by LICEDA                             | SVOC target analytes are evaluated using the criteria of 15 %RSD or correlation coefficient criteria of 0.990 for initial                                                                 |
| SVOCs by USEPA<br>Method 8270C              | calibration curves. Calibration verifications are evaluated using a criterion of 20%D for all target compounds. Initial                                                                   |
| Calibration Evaluation                      | calibrations and calibration verifications were also evaluated using the criterion of a RF value of greater than or equal to a                                                            |
| Calibration Evaluation                      | value of 0.05 for the target analytes. If analyzed, the second-source standard (ICV) is evaluated using laboratory control limits                                                         |
|                                             | or 70% to 130% recovery.                                                                                                                                                                  |
|                                             | Due to any relative standard deviation (RSD) calibration excursions, detected results for analytes in samples associated with                                                             |
|                                             | the calibration are qualified as approximate (J). Non-detected results associated with RSD excursions may be qualified as                                                                 |
|                                             | approximate (UJ) based on professional judgment.                                                                                                                                          |
| Calibuation Astions for                     | If the RSD calibration excursion is greater than 90, detected results for analytes in samples associated with the calibration are                                                         |
| Calibration Actions for<br>VOCs (8260B) and | qualified as approximate (J) and non-detected results may be rejected (R), applying professional judgment.                                                                                |
| SVOCs (8270C)                               | Due to any %D calibration verification excursions, detected and non-detected results for analytes in samples associated with                                                              |
| 37003 (82700)                               | the calibration are qualified as approximate (J, UJ).                                                                                                                                     |
|                                             | If the %D calibration excursion is greater than 90, detected results for analytes in samples associated with the calibration are                                                          |
|                                             | qualified as approximate (J) and non-detected results may be rejected (R), applying professional judgment.                                                                                |
|                                             | For response factor excursions, detected results are qualified as approximate (J) and non-detected results are rejected (R).                                                              |
|                                             | For initial calibration verifications (ICV) excursions, detected and non-detected results for analytes in samples associated with                                                         |
|                                             | the calibration are qualified as approximate (J, UJ). The response direction and detection of target analytes in associated                                                               |
| PCBs by USEPA                               | sample may be considered in applying qualifiers.  PCB target analytes are evaluated using the criteria of 20 %RSD or correlation coefficient of 0.990 for initial calibration curves.     |
| Method 8082                                 | Calibration verifications are evaluated using a criterion of 15 %D for target analytes.                                                                                                   |
| Calibration Evaluation                      | ICV recoveries are evaluated using a boratory control limits if available or 70 to 130%.                                                                                                  |
|                                             | Pesticide target analytes are evaluated using the criteria of 20 %RSD or correlation coefficient of 0.990 for initial calibration                                                         |
| Pesticides by USEPA                         | curves.                                                                                                                                                                                   |
| Method 8081A                                | Calibration verifications are evaluated using a criterion of 20 %D for the target analytes.                                                                                               |
| Calibration Evaluation                      | ICV recoveries are evaluated using laboratory control limits if available or 70 to 130%.                                                                                                  |
| Harbisidas by HCEDA                         | Herbicide target analytes are evaluated using the criteria of 20 %RSD or correlation coefficient of 0.990 for initial calibration                                                         |
| Herbicides by USEPA<br>Method 8151A         | curves.                                                                                                                                                                                   |
| Calibration Evaluation                      | Calibration verifications are evaluated using a criterion of 20 %D for the target analytes.                                                                                               |
| Calibration Evaluation                      | ICV recoveries are evaluated using laboratory control limits if available or 70 to 130%.                                                                                                  |
|                                             | Due to any relative standard deviation (RSD) calibration excursions, detected results for analytes in samples associated with                                                             |
|                                             | the calibration are qualified as approximate (J). Non-detected results associated with RSD excursions may be qualified as                                                                 |
| Calibration Actions for                     | approximate (UJ) based on professional judgment.                                                                                                                                          |
| PCB, Pesticides and                         | Due to any %D calibration verification excursions, detected and non-detected results for analytes in samples associated with                                                              |
| Herbicides GC<br>analyses                   | the calibration are qualified as approximate (J, UJ).  For initial calibration verifications (ICV) excursions, detected and non-detected results for analytics in camples associated with |
|                                             | For initial calibration verifications (ICV) excursions, detected and non-detected results for analytes in samples associated with                                                         |
|                                             | the calibration are qualified as approximate (J, UJ). The response direction and detection of target analytes in associated sample may be considered in applying qualifiers.              |
| Calibration Data- GC                        | Data are evaluated using the criteria of 20%RSD for initial calibrations, or correlation coefficient of 0.990 for calibration curves,                                                     |
| by USEPA Method                             | and 20%D for the calibration verifications. Results are qualified for primary column calibration excursions. The second-source                                                            |
| 8011                                        | standard (ICV) is evaluated using laboratory control limits or 70% to 130% recovery.                                                                                                      |
| Organic Multi-results                       | When two results are reported, due to re-preparation or for dilution analyses, both sets of results are evaluated during the                                                              |
| J                                           | validation process. Based on the evaluation of the associated quality control data, the results reflecting the higher quality data                                                        |
|                                             | are reported.                                                                                                                                                                             |
|                                             |                                                                                                                                                                                           |



| Table 3 - O'Brien & Ger                                         | e data validation approach using NJDEP data validation guidelines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Organic<br>Surrogate, MS/MSD,                           | Laboratory established control limits are used to assess duplicate, surrogate, MS/MSD, and LCS data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Surrogate, MS/MSD,<br>LCS, Duplicate Data                       | In the case that excursions are identified in more than one quality control sample of the same matrix within one sample delivery group, samples are batched according to sample preparation or analysis date and qualified accordingly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 | For surrogate recoveries are not within laboratory control limits:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 | If two or more surrogate recoveries are outside of laboratory control limits for SVOC analysis, results are rejected (R, 81) unless matrix interferences are confirmed by re-extraction and reanalysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 | If one or more surrogate recoveries are not within laboratory control limits for PCB, results are qualified as UJ, J, 81B).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                 | If LCS percent recoveries are less than laboratory control limits but greater than ten percent, non-detected and detected results are qualified as approximate (UJ, J, 88) to indicate minor excursions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                 | If LCS percent recoveries are greater than laboratory control limits, detected results are qualified as approximate (J, 88) to indicate minor excursions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                 | If LCS percent recoveries are outside of laboratory control limits and less than ten percent, detected results are qualified as approximate (J, 88) and non-detected results are qualified as rejected (R, 88A) to indicate major excursions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                 | If RPDs for MSDs or duplicates are outside of laboratory control limits, detected results are qualified as approximate (J, 89A) to indicate minor excursions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Organic MS/MSD Data                                             | Qualification of organic data for MS/MSD analyses is performed only when both MS and MSD percent recoveries are outside of laboratory control limits with zero percent recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                 | Organic data are rejected (R, 87) to indicate major excursions in the case that both MS/MSD recoveries are zero.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sample dilution Data                                            | Qualification of data is not performed if MS/MSD or surrogate recoveries are outside of laboratory control limits due to sample dilution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MS/MSD and Field<br>Duplicate Data –<br>Organic Data            | Qualification of data associated with MS/MSD or field duplicate excursions is limited to the un-spiked sample or the field duplicate pair, respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Field Duplicate Data                                            | Field duplicate data are evaluated against relative percent difference (RPD) criteria of less than 50 percent for aqueous samples and less than 100 percent for soils when results are greater than five times the QL. When sample results for field duplicate pairs are less than five times the QL, the data are evaluated using control limits of plus or minus two times the QL for soils. If RPDs for field duplicates are outside of laboratory control limits, detected and non-detected results are qualified as approximate (UJ, J, 90) to indicate minor excursions.                                                                                                                                    |
| Internal Standard -<br>Organic Data                             | Internal standard recoveries are evaluated using control limits of within 50% of the lower standard area and up to 100% of the upper standard area of the associated calibration verification standard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 | Sample results are qualified as approximate (UJ, J, 50) if one internal standard does not meet criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                 | Detected sample results are qualified as approximate (J, 51) if two or more internal standards do not meet criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Internal                                                        | Non-detected sample results are rejected (R, 51) if two or more internal standards do not meet criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Standard/Surrogate -<br>Organic Data- Drinking<br>Water methods | Internal standard recoveries are evaluated using method control limits. Monitor the integrated areas of the quantitation ions of the internal standards and surrogates in all samples, continuing calibration checks, and blanks. These should remain reasonably constant over time. An abrupt change may indicate a matrix effect or an instrument problem. If a cryogenic interface is utilized, it may indicate an inefficient transfer from the trap to the column. These samples must be reanalyzed or a laboratory fortified duplicate sample analyzed to test for matrix effect. A drift of more than 50% in any area is indicative of a loss in sensitivity, and the problem must be found and corrected. |
|                                                                 | CCV- Determine that the absolute areas of the quantitation ions of the internal standard and surrogates have not decreased by more than 30% from the areas measured in the most recent continuing calibration check, or by more than 50% from the areas measured during initial calibration. If these areas have decreased by more than these amounts, adjustments must be made to restore system sensitivity.                                                                                                                                                                                                                                                                                                    |
| Evaluation of Internal                                          | Internal standard areas of samples are evaluated using the validation control limit of 70 to 130 percent recovery when compared to the calibration verification associated with the samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Standards for samples<br>(VOCs for USEPA                        | Sample results are qualified as approximate (UJ, J, 50) if one internal standard does not meet criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Method 524.2)                                                   | Detected sample results are qualified as approximate (J, 51) if two or more internal standards do not meet criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                 | Non-detected sample results are rejected (R, 51) if two or more internal standards do not meet criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



| Table 3 - O'Brien & G                          | Gere data validation approach using NJDEP data validation guidelines                                                                                                                                                                          |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                | Internal standard areas of CCVs are evaluated using the validation control limit of 50 to 100 percent recovery when compared to the initial calibration.                                                                                      |
| <b>Evaluation of CCVs</b>                      |                                                                                                                                                                                                                                               |
| (VOCs for USEPA                                | Sample results are qualified as approximate (UJ, J, 50) if one internal standard does not meet criteria.                                                                                                                                      |
| Method 524.2)                                  | Detected sample results are qualified as approximate (J, 51) if two or more internal standards do not meet criteria.                                                                                                                          |
|                                                | Non-detected sample results are rejected (R, 51) if two or more internal standards do not meet criteria.                                                                                                                                      |
| Evaluation of Initial                          |                                                                                                                                                                                                                                               |
| (ICV) and Calibration                          |                                                                                                                                                                                                                                               |
| Verification (CCV) fo                          |                                                                                                                                                                                                                                               |
| Metals by 6010B/6020A,                         | Mercury is evaluated using the criteria for ICV of 90% to 110% of the expected value and 80% to 120% of the expected value for the CCV.                                                                                                       |
| Mercury by                                     | Total Cyanide is evaluated using the criteria for ICV and CCV of 85% to 115% of the expected value.                                                                                                                                           |
| 7470A/7471B, and                               | For analyses utilizing a calibration curve, the correlation coefficient for the first or second order curve must be $\geq 0.995$ .                                                                                                            |
| Total Cyanide by                               |                                                                                                                                                                                                                                               |
| 9012B                                          |                                                                                                                                                                                                                                               |
| Performance                                    | ICP-MS data is evaluated using resolution of mass calibration of within 0.1 $\mu$ and the %RSD of less than 15%.                                                                                                                              |
| Evaluation for ICP-M                           | Resolution must be less than 0.9amu of full width at 10% of peak height.                                                                                                                                                                      |
| by 6020A                                       |                                                                                                                                                                                                                                               |
| Evaluation of Initial (ICV) and Calibration    |                                                                                                                                                                                                                                               |
| Verification (CCV) for                         |                                                                                                                                                                                                                                               |
| Metals by EPA metho                            |                                                                                                                                                                                                                                               |
| 200.7/200.8 and                                | For analyses utilizing a calibration curve, the correlation coefficient for the first or second order curve must be $\geq 0.995$ .                                                                                                            |
| Anions by Method                               |                                                                                                                                                                                                                                               |
| 300.0                                          |                                                                                                                                                                                                                                               |
| Evaluation of Internal                         |                                                                                                                                                                                                                                               |
| Standards for ICP-MS                           | response in the calibration blank.                                                                                                                                                                                                            |
| by 200.8                                       | Internal standard recognition are such at all views and tall limits of a consent relative internal to (0/DI) from COO/ to 1250/ of the                                                                                                        |
| Evaluation of Internal<br>Standards for ICP-MS |                                                                                                                                                                                                                                               |
| by 6020A                                       | The intensity of any internal standard must be >30% or <120% of the intensity of the internal standard in the initial calibration                                                                                                             |
| by 6626/1                                      | standard.                                                                                                                                                                                                                                     |
|                                                | The intensity of the internal standard of the CCB and CCV must agree within ±20% of the intensity of the internal standard in                                                                                                                 |
|                                                | the ICV.                                                                                                                                                                                                                                      |
| Metal and Inorganic                            |                                                                                                                                                                                                                                               |
| MS/MSD,                                        | samples for the same matrix, within the same preparation batch, within the same SDG group.                                                                                                                                                    |
| Laboratory/Field                               |                                                                                                                                                                                                                                               |
| Duplicate, Serial<br>Dilution                  |                                                                                                                                                                                                                                               |
| Validation Footnotes                           |                                                                                                                                                                                                                                               |
| Footnote                                       | Type of Excursion                                                                                                                                                                                                                             |
| 1                                              | The value reported is less than or equal to three (3) times the value in the method blank/preparation blank. It is the policy of NJDEP-                                                                                                       |
|                                                | DPFSR to negate the reported value due to probable foreign contamination unrelated to the actual sample. The end-user, however, is                                                                                                            |
|                                                | alerted that a reportable quantity of the analyte/compound was detected. The B qualifier must be reported.                                                                                                                                    |
| 2                                              | The value reported is greater than three (3) times but less than or equal to 10 times the value in the method blank/preparation blank                                                                                                         |
|                                                | and is considered "real". However, the reported value must be quantitatively qualified "J" due to the method blank contamination. The                                                                                                         |
| 3                                              | "B" qualifier alerts the end-user to the presence of this analyte/compound in the method blank.  The value reported is less than or equal to three (3) times the value in the trip/field blank. It is the policy of NJDEP-DPFSR to negate the |
| 3                                              | reported value as due to probable foreign contamination unrelated to the actual sample. The end-user, however, is alerted that a                                                                                                              |
|                                                | reportable quantity of the analyte/compound was detected.                                                                                                                                                                                     |
| 4                                              | The value reported is greater than three (3) times the value in the trip/field blank but less than or equal to 10 times the value in the                                                                                                      |
|                                                | blank and is considered "real". However, the reported value must be quantitatively qualified "J" due to trip/field blank contamination.                                                                                                       |
| 4A                                             | The result was qualified due to negative drift.                                                                                                                                                                                               |
| 4B                                             | The result was qualified as "U" due to blank contamination.                                                                                                                                                                                   |
| 5                                              | The concentration reported by the laboratory is incorrectly calculated.                                                                                                                                                                       |
| 6                                              | The laboratory failed to report the presence of the analyte in the sample.                                                                                                                                                                    |
|                                                |                                                                                                                                                                                                                                               |
| 7                                              | The reported metal value was qualified because the Initial/Continuing Calibration Standard was not within the recovery range.                                                                                                                 |
| 8                                              | No CRDL Standard for AA or ICP analysis was performed. Therefore, the analyte affected was rejected.                                                                                                                                          |
| 9                                              | The reported concentration was quantitatively qualified because the concentration was below the CRDL but greater than the MDL. The                                                                                                            |
|                                                | concentration is considered estimated since the value obtained is at the low end of the instrument performance.                                                                                                                               |
| 9A                                             | IDLs are greater than the CRDLs.                                                                                                                                                                                                              |
|                                                |                                                                                                                                                                                                                                               |



| Table 3 - O'Bri | en & Gere data validation approach using NJDEP data validation guidelines                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 10              | The reported metal value was qualified because the ICP Interference Check Sample was outside the recovery range (80-120 percent).                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 11              | The non-detect metal value was qualified "UJ" because the ICP Interference Check Sample was within the range of 50 and 79%; hence a possibility of false negatives exists.                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 12              | This non-detected metal analyte had Laboratory Control Sample recovery that fell within the range of 70-79%. The end-user should be aware of the possibility of false negatives; therefore, this analyte is flagged as estimated (UJ).                                                                                                                                                                                                                                                                          |  |  |  |
| 13              | The reported metal value was qualified because the Laboratory Control Sample recovery fell within the range of 70-79 %. The er user should be aware of results that may be biased low.                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 14              | The reported metal value was qualified because the Laboratory Control Sample recovery was greater than 120% but less than or equa to 130%. The end-user should be aware of results that may be biased high.                                                                                                                                                                                                                                                                                                     |  |  |  |
| 15              | The metal analyte is rejected because the Laboratory Control Sample recovery was less than 70% or greater than 130%.                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 16              | In the Duplicate Sample Analysis for metals, the analyte fell outside the control limits of +20 percent or + CRDL. Therefore, result for the metal was qualified.                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 17              | This analyte was rejected because the laboratory performed the Duplicate Analysis on a field blank.                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 18              | The reported metal value was qualified because the spike recovery was greater than 125 percent but less than or equal to 200%.                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 18A             | The reported metal was qualified because both the spike recovery and matrix spike duplicate recovery were outside of the validation control limits.                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 19              | The reported metal value was qualified because the spike recovery was between 25 and 74 percent.                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 20              | The reported metal value was qualified because the spike recovery was less than 25 percent. The reported value actually indicated the minimum concentration at which the metal was present.                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 21              | The non-detected metal value was qualified (UJ) because the spike recovery was between 25 and 74 percent. The possibility of a false negative exists.                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 22              | The non-detected metal value was rejected because the spike recovery was less than 25 percent.                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 23              | The reported metal value was rejected because the laboratory used a field blank for the Sample Spike Analysis.                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 24              | There was no Post-Digestion Spike Sample Recovery analysis performed. Therefore, the analyte was rejected.                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 25              | The reported metal value was qualified because the Serial Dilution was not within ten percent of sample concentration.                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 26              | The reported metal value was rejected because the laboratory used a field blank for the Serial Dilution analysis or the post-diges spike.                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 27              | This metal analyte is rejected because the preparation blank concentration of this analyte is greater than the CRDL and the reported sample concentration is less than ten (10) times the preparation blank concentration.                                                                                                                                                                                                                                                                                      |  |  |  |
| 28              | The laboratory incorrectly transcribed the raw data onto the Inorganic Analysis Data Sheet form or there are data package issues.                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 28A             | Verification of instrument parameters was performed outside of the required frequency.                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 28B             | A percent solids issue was detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 29              | The reported metal analyte was rejected because the CRDL standard % Recovery fell less than 30% or was greater than 175%, or another severe CRDL deficiency was detected.                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 30              | The non-detected metal value was rejected because the post-digestion spike recovery was less than 25 percent.                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 30A             | The metal value was qualified since the post-digestion spike recovery was exceeded.                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 31              | The reported metal analyte was rejected because the associated Continuing Calibration Blank result was greater than the CRDL.                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 32              | The reported metal analyte was rejected because this sample is not associated with a Laboratory Control Sample or ICB or CCB.                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 33              | The laboratory made a transcription error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 33A             | A methods comparison issue was detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 34              | The laboratory used an incorrectly associated Preparation Blank.                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 35              | This analyte is rejected because the laboratory exceeded the holding time for analysis or extraction.                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 35A             | Result was qualified due to a holding time excursion.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 36              | This metal value was qualified because the CRDL standard was not within the recovery range.                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 37              | The reported concentration is quantitatively qualified due to calibration deficiencies.                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 38              | The reported concentration is quantitatively qualified due to surrogate recovery outliers.                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 39              | The reported concentration is quantitative qualified because the concentration is below the RL.                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 40              | The sample holding time to re-extraction and/or reanalysis was exceeded. All positive results including the tentatively identified compounds are highly qualified.                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 41              | The mass spectral identification has not been confirmed and the identification of this compound has been rejected. This compound should now be considered an unknown and the reported concentration is considered an estimated value.                                                                                                                                                                                                                                                                           |  |  |  |
| 42              | The percent Difference of the calculated values on both columns is greater than 100% and less than 999.9 %. This value is significantly greater than the 25 % limits established by the USEPA-Contract Laboratory Program. The extreme variation between the values from the two columns is apparently due to instrumentation problems and/or matrix interference. Therefore, the reported concentrations cannot be verified and only a tentative identification of the Aroclor or pesticide can be determined. |  |  |  |
| 42A             | The percent difference from both columns was greater than 25%.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 42B             | The percent difference from both columns was greater than 40%.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |



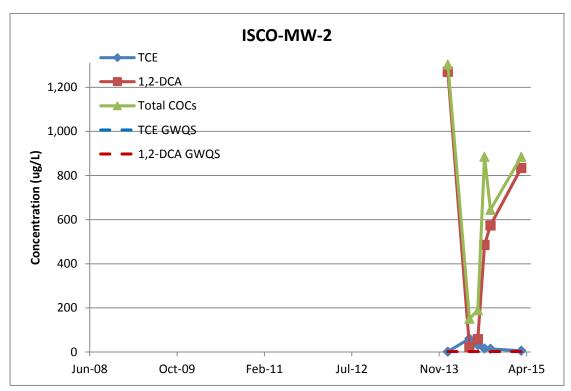
| Table 3 - O'Brien | & Gere data validation approach using NJDEP data validation guidelines                                                                                                                                                                                                                                                                                                                                                |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 42C               | The percent difference from both columns was greater than 70%.                                                                                                                                                                                                                                                                                                                                                        |  |
| 42D               | The percent difference from both columns was greater than 100% without evidence of matrix interferences being present. The results are rejected (R).                                                                                                                                                                                                                                                                  |  |
| 42E               | Results were reported at a concentration that was less than the PQL with a %D greater than 50 percent. The PQL is reported and qualified as non-detected (U).                                                                                                                                                                                                                                                         |  |
| 43                | The peak retention times of the Aroclors or pesticides detected in the samples are outside of the retention time window established in the initial calibration. The identification of the Aroclors or pesticides cannot be verified due to the retention time shift outside of the windows. Retention time shifts are evident in all of the continuing calibration standards and the Performance Evaluation Mixtures, |  |
|                   | therefore the usability of the data is questionable.                                                                                                                                                                                                                                                                                                                                                                  |  |
| 44                | The laboratory didn't provide the mass spectral proof for the analyte although the quantitation report indicates the presence of the analyte. The presence of this analyte in the sample is considered tentative.                                                                                                                                                                                                     |  |
| 45                | The non target compound is qualified "J" and considered an estimated value because relative response factors are not determin non-target compounds.                                                                                                                                                                                                                                                                   |  |
| 46                | The laboratory's call on the non target compound did not match the mass spectra of the compound at the approximate scan number in the blank. The laboratory call is incorrect.                                                                                                                                                                                                                                        |  |
| 47                | The laboratory failed to report this analyte on the Organic Analysis Data Sheet (OADS)  Form even though the TIC, quantitation report and library search indicates a hit for the analyte.                                                                                                                                                                                                                             |  |
| 48                | The laboratory reported this analyte in the QADS form. However, this analyte was negated in the quantitation report. QA reviewer agrees the mass spectrum is not a good match and therefore, negates the presence of this analyte in the sample.                                                                                                                                                                      |  |
| 49                | No library search was submitted for this unknown.                                                                                                                                                                                                                                                                                                                                                                     |  |
| 49A               | Results were rejected since correct internal standard was not used.                                                                                                                                                                                                                                                                                                                                                   |  |
| 50                | One internal standard area in the sample did not meet the QC criteria. Therefore, all compound results using this internal standard for quantitation are quantitatively estimated. (UJ, J)                                                                                                                                                                                                                            |  |
| 51 (See 84)       | Two or more internal standard areas in the sample did not meet the QC criteria with recoveries of greater than 25%. The detected results for the entire fraction for that sample are qualified as approximate (J). The non-detected results are rejected (R).                                                                                                                                                         |  |
| 52                | The RIC in the raw data indicates a non-target(s) is present. The lab failed to report and provide library search(s) for the non-target(s).                                                                                                                                                                                                                                                                           |  |
| 53                | The laboratory did not quantify the pesticides present in the sample. The pesticide was confirmed on a second column. Quantitation of the peaks revealed that the value is above the CRQL.                                                                                                                                                                                                                            |  |
| 54                | The lab failed to report this analyte although it was found in both columns and is within the retention times of both columns for the analyte.                                                                                                                                                                                                                                                                        |  |
| 55                | The retention time window for this analyte overlaps with the retention time window of another analyte. The identity is indistinguishable and therefore tentative.                                                                                                                                                                                                                                                     |  |
| 56                | The laboratory reported concentration does not agree with QA reviewer's calculated concentration.                                                                                                                                                                                                                                                                                                                     |  |
| 57                | The compound exceeded the calibration range of the instrument and is indicated with the "E" qualifier.                                                                                                                                                                                                                                                                                                                |  |
| 58                | The compound is a suspected Aldol condensation product and is flagged with the "A" qualifier.                                                                                                                                                                                                                                                                                                                         |  |
| 59                | The laboratory was required to dilute the samples to bring the peaks onto scale.                                                                                                                                                                                                                                                                                                                                      |  |
| 60                | This sample was diluted prior to analysis. The value reported prior to the dilution correction is less than three (3) times the value in the method blank. It is the policy of NJDEP-DPFSR to negate the reported value due to probable foreign laboratory contamination unrelated to the actual sample. The end-user is alerted that a reportable quantity of the analyte was detected.                              |  |
| 61                | This non-target compound was detected as a target compound in another analytical fraction. Therefore, the presence of this compound as a non-target analyte is negated.                                                                                                                                                                                                                                               |  |
| 62                | This sample was diluted prior to analysis. The value reported prior to the dilution correction is greater than three (3) times the value in the method blank and is considered "real". However, the reported value must be quantitatively qualified "J" due to method blank contamination. The "B" qualifier alerts the end-user to the presence of this analyte in the method blank.                                 |  |
| 62A               | Results are rejected due to a severe blank analysis excursion.                                                                                                                                                                                                                                                                                                                                                        |  |
| 62B               | Results are qualified due to a blank analysis excursion.                                                                                                                                                                                                                                                                                                                                                              |  |
| 63                | The results are rejected because the initial calibration, continuing calibration or internal standard was not performed using the proper sequence, concentration, matrix, or internal standards.                                                                                                                                                                                                                      |  |
| 63A               | Results are rejected due to a severe pesticide/Aroclor analysis issue.                                                                                                                                                                                                                                                                                                                                                |  |
| 63B               | Results are negated due to a blank analysis excursion.                                                                                                                                                                                                                                                                                                                                                                |  |
| 63C               | Results are qualified due to a pesticide/Aroclor analysis issue.                                                                                                                                                                                                                                                                                                                                                      |  |
| 64                | The results are rejected because the D of the single component pesticide and/or surrogate in the PEM(s) is greater than 25%.                                                                                                                                                                                                                                                                                          |  |
| 64A               | Results are rejected due to a major calibration excursion.                                                                                                                                                                                                                                                                                                                                                            |  |
| 65                | The results are rejected because of resolution, scaling, or retention time issues.                                                                                                                                                                                                                                                                                                                                    |  |
| 65A               | Results are qualified due to scaling, or calibration issues.                                                                                                                                                                                                                                                                                                                                                          |  |
| 66                | The result is rejected due to retention time deficiencies.                                                                                                                                                                                                                                                                                                                                                            |  |
| 67                | The result is qualified because the DDT and/or Endrin breakdown was greater than 20%.                                                                                                                                                                                                                                                                                                                                 |  |

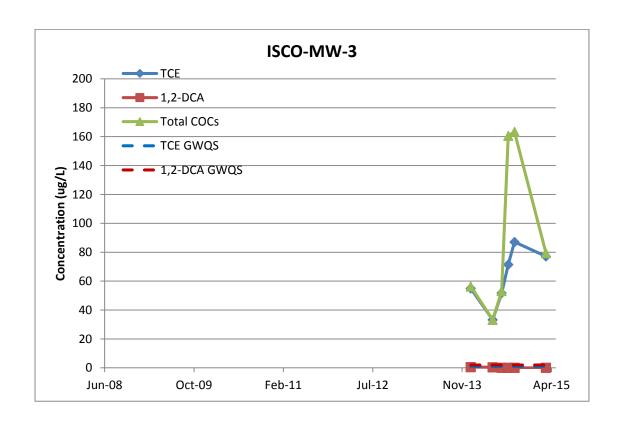


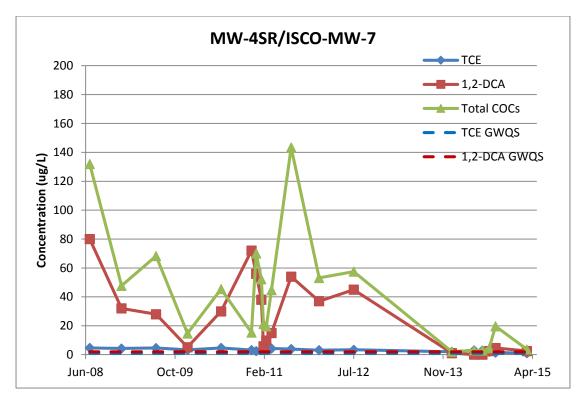
| Table 3 - O'Bri | en & Gere data validation approach using NJDEP data validation guidelines                                                                                                                                                                            |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 68              | The result is qualified because the combined DDT/Endrin breakdown is greater than                                                                                                                                                                    |  |
|                 | 30%.                                                                                                                                                                                                                                                 |  |
| 69              | The results are rejected because GPC cleanup was not performed on the sample extract.                                                                                                                                                                |  |
| 70              | The results are rejected because florisil cleanup was not performed on the sample extract.                                                                                                                                                           |  |
| 71              | The results are rejected due to GPC calibration or analysis deficiencies.                                                                                                                                                                            |  |
| 72              | The results are rejected because the florisil cartridge check yielded unacceptable percent recoveries or was not performed                                                                                                                           |  |
|                 | properly.                                                                                                                                                                                                                                            |  |
| 73              | The sample holding time was exceeded by greater than ten days. The sample results are rejected.                                                                                                                                                      |  |
| 74              | The GC/MS Instrument Performance Check Solution (IPCS) failed acceptance criteria or was not performed. The associ sample results are rejected.                                                                                                      |  |
| 74A             | The results are qualified due to IPCS time-of-analysis excursions.                                                                                                                                                                                   |  |
| 75              | Three or more analytes in the initial calibration or continuing calibration failed to meet acceptance criteria. The associated sample results are rejected.                                                                                          |  |
| 76              | The results in the fraction are rejected because the response factor in the initial and/or continuing calibration is less than 0.01 or does not meet the project requirement.                                                                        |  |
| 77              | The results in the fraction are rejected because the %RSD and/or %D is greater than 40% (or in the case of %D, less than - 40%).                                                                                                                     |  |
| 78              | The positive result is qualified because the RRF of the compound (with no %RSD or %D) is less than 0.01 or does not meet the project requirement.                                                                                                    |  |
| 79              | The non-detect result is rejected because the RRF of the compound (with no %RSD or %D) is less than 0.01.                                                                                                                                            |  |
| 80              | Five or more analytes in the initial calibration or continuing calibration failed to meet %RSD or %D and/or RRF acceptance criteria. The associated sample results are rejected.                                                                     |  |
| 80A             | Results are rejected since the continuing calibration was not performed properly.                                                                                                                                                                    |  |
| 81              | Sample results for the fraction are rejected because the % recovery of two or more SMCs (or surrogates) failed to meet criteria.                                                                                                                     |  |
| 81A             | Results are rejected due to severe surrogate analysis excursions.                                                                                                                                                                                    |  |
| 81B             | Results are qualified due to surrogate analysis excursion.                                                                                                                                                                                           |  |
| 82              | Sample results for the fraction are rejected because the %recovery of one or more SMCs (or surrogates) in the associated method blank failed to meet criteria.                                                                                       |  |
| 83              | Sample results for the fraction are rejected because the retention time of one or more internal standards deviated by more than +/-30 seconds from the retention time of the corresponding internal standard in the associated calibration standard. |  |
| 84              | Two or more internal standard areas in the sample did not meet the QC criteria with recoveries of less than 25%. The detected results and non-detected results are rejected (R).                                                                     |  |
| 84A             | Results are qualified due to sulfur cleanup issue.                                                                                                                                                                                                   |  |
| 84B             | Results are qualified due to internal standard failure.                                                                                                                                                                                              |  |
| 85              | Sample results for the fraction are rejected because sulfur was present in the sample and sulfur cleanup was not performed or performed properly.                                                                                                    |  |
| 86              | Results are rejected due to failure to submit manual integration technique.                                                                                                                                                                          |  |
| 87              | Results are rejected or qualified due to zero matrix spike/ matrix spike duplicate recoveries.                                                                                                                                                       |  |
| 88              | Results are qualified due to laboratory control sample excursions.                                                                                                                                                                                   |  |
| 88A             | Results are rejected due to laboratory control sample recoveries of less than ten percent.                                                                                                                                                           |  |
| 89              | Detected organic results are qualified due to zero matrix spike/matrix spike duplicate recoveries.                                                                                                                                                   |  |
| 89A             | Organic results are qualified due to matrix spike/matrix spike duplicate precision excursions.                                                                                                                                                       |  |
| 90              | Results are qualified due to field duplicate excursions. (UJ, J)                                                                                                                                                                                     |  |
| 91              | Results are qualified due to calibration excursions.                                                                                                                                                                                                 |  |
| 92              | Results are rejected due to significant canister pressure differences.                                                                                                                                                                               |  |
| 93              | Results are rejected since SIM was utilized.                                                                                                                                                                                                         |  |
| 94              | Results are rejected since a separate MDL study was not performed for each instrument.                                                                                                                                                               |  |
| 95              | Results are qualified due to analysis excursions.                                                                                                                                                                                                    |  |
| 96              | Results are qualified due to a sample collection excursion.                                                                                                                                                                                          |  |
| 96A             | Results are rejected due to a sample collection excursion.                                                                                                                                                                                           |  |
| 97              | Results are qualified due to sample preparation excursion.                                                                                                                                                                                           |  |
| 98              | The reported hexavalent chromium result was qualified because the post verification spike was greater than 115%.                                                                                                                                     |  |
| 99              | The reported hexavalent chromium result was qualified because the post verification spike was less than 85%                                                                                                                                          |  |
| 100             | The non-detected hexavalent chromium result was qualified (UJ) because the post verification spike was less than 85%. The possibility                                                                                                                |  |



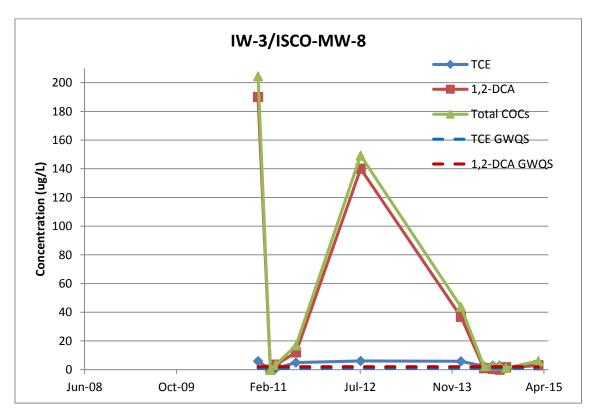
| Table 3 - O'Brien & Gere data validation approach using NJDEP data validation guidelines |                                                                                                                                                                   |  |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                          | of a false negative exists.                                                                                                                                       |  |
| 101                                                                                      | The reported hexavalent chromium result was qualified because the pre-digestion spike recovery was less than 75%.                                                 |  |
| 102                                                                                      | The reported hexavalent chromium result was qualified because the pre-digestion spike recovery was greater than 125%.                                             |  |
| 103                                                                                      | The non-detected hexavalent chromium result was qualified because the pre-digestion spike recovery was less than 75%. The possibility of a false negative exists. |  |
| 104                                                                                      | Results are qualified due to sample preservation excursion.                                                                                                       |  |
| * Indicates t                                                                            | hat NJDEP data validation guidelines do not address this situation; therefore, validation qualifiers are not applied to data.                                     |  |
|                                                                                          |                                                                                                                                                                   |  |
| Source O'Bri                                                                             | en & Gere                                                                                                                                                         |  |


| QA/QC Term                                                                         | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QA/QC Term                                                                         | The level above which numerical results may be obtained with a specified degree of                                                                                                                                                                                                                                                                                                                                                                       |
| Quantitation limit                                                                 | confidence; the minimum concentration of an analyte in a specific matrix that can be identified and quantified above the method detection limit and within specified limits of precision and bias during routine analytical operating conditions.                                                                                                                                                                                                        |
| Method detection limit                                                             | The minimum concentration of an analyte that undergoes preparation similar to the environmental samples and can be reported with a stated level of confidence that the analyte concentration is greater than zero.                                                                                                                                                                                                                                       |
| Instrument detection limit                                                         | The lowest concentration of a metal target analyte that, when directly inputted and processed on a specific analytical instrument, produces a signal/response that is statistically distinct from the signal/response arising from equipment "noise" alone.                                                                                                                                                                                              |
| Gas chromatography/mass<br>spectrometry (GC/MS)<br>instrument performance<br>check | Performed to verify mass resolution, identification, and to some degree, instrument sensitivity. These criteria are not sample specific; conformance is determined using standard materials.                                                                                                                                                                                                                                                             |
| Calibration                                                                        | Compliance requirements for satisfactory instrument calibration are established to verify that the instrument is capable of producing acceptable quantitative data. Initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of analysis and calibration verifications document satisfactory maintenance and adjustment of the instrument on a day-to-day basis.                                       |
| Relative Response Factor                                                           | A measure of the relative mass spectral response of an analyte compared to its internal standard. Relative Response Factors are determined by analysis of standards and are used in the calculation of concentrations of analytes in samples.                                                                                                                                                                                                            |
| Relative standard deviation                                                        | The standard deviation divided by the mean; a unit-free measure of variability.                                                                                                                                                                                                                                                                                                                                                                          |
| Correlation coefficient                                                            | A measure of the strength of the relationship between two variables.                                                                                                                                                                                                                                                                                                                                                                                     |
| Relative Percent Difference                                                        | Used to compare two values; the relative percent difference is based on the mean of the two values, and is reported as an absolute value, i.e., always expressed as a positive number or zero.                                                                                                                                                                                                                                                           |
| Percent Difference                                                                 | Used to compare two values; the percent difference indicates both the direction and the magnitude of the comparison, i.e., the percent difference may be either negative, positive, or zero.                                                                                                                                                                                                                                                             |
| Percent Recovery                                                                   | The act of determining whether or not the methodology measures all of the target analytes contained in a sample.                                                                                                                                                                                                                                                                                                                                         |
| Calibration blank                                                                  | Consists of acids and reagent water used to prepare metal samples for analysis. This type of blank is analyzed to evaluate whether contamination is occurring during the preparation and analysis of the sample.                                                                                                                                                                                                                                         |
| Method blank                                                                       | A water or soil blank that undergoes the preparation procedures applied to a sample (i.e., extraction, digestion, clean-up). These samples are analyzed to examine whether sample preparation, clean-up, and analysis techniques result in sample contamination.                                                                                                                                                                                         |
| Field/equipment                                                                    | Collected and submitted for laboratory analysis, where appropriate. Field/equipment blanks are handled in the same manner as environmental samples. Equipment/field blanks are analyzed to assess contamination introduced during field sampling procedures.                                                                                                                                                                                             |
| Trip blank                                                                         | Consist of samples of analyte-free water that have undergone shipment from the sampling site to the laboratory in coolers with the environmental samples submitted for volatile organic compound (VOC) analysis. Trip blanks will be analyzed for VOCs to determine if contamination has taken place during sample handling and/or shipment. Trip blanks will be utilized at a frequency of one each per cooler sent to the laboratory for VOC analysis. |
| Internal standards performance                                                     | Compounds not found in environmental samples which are spiked into samples and quality control samples at the time of sample preparation for organic analyses. Internal standards must meet retention time and recovery criteria specified in the analytical method. Internal standards are used as the basis for quantitation of the target analytes.                                                                                                   |
| Surrogate recovery                                                                 | Compounds similar in nature to the target analytes but not expected to be detected in the environmental media which are spiked into environmental samples, blanks, and quality control samples prior to sample preparation for organic analyses. Surrogates are used to evaluate analytical efficiency by measuring recovery.                                                                                                                            |



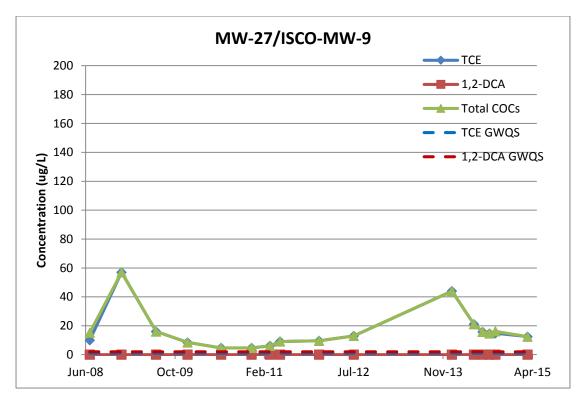


| Laboratory control sample<br>Matrix spike blank analyses | Standard solutions that consist of known concentrations of the target analytes spiked into laboratory analyte-free water or sand. They are prepared or purchased from a certified manufacturer from a source independent from the calibration standards to provide an independent verification of the calibration procedure. They are prepared and analyzed following the same procedures employed for environmental sample analysis to assess method accuracy independently of sample matrix effects. |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Laboratory duplicate                                     | Two or more representative portions taken from one homogeneous sample by the analyst and analyzed in the same laboratory.                                                                                                                                                                                                                                                                                                                                                                              |
| Matrix                                                   | The material of which the sample is composed or the substrate containing the analyte of interest, such as drinking water, waste water, air, soil/sediment, biological material.                                                                                                                                                                                                                                                                                                                        |
| Matrix Spike (MS)                                        | An aliquot of a matrix (water or soil) fortified (spiked) with known quantities of specific target analytes and subjected to the entire analytical procedure in order to indicate the appropriateness of the method for the matrix by measuring recovery.                                                                                                                                                                                                                                              |
| Matrix spike duplicate (MSD)                             | A second aliquot of the same matrix as the matrix spike that is spiked in order to determine the precision of the method.                                                                                                                                                                                                                                                                                                                                                                              |
| Retention time                                           | The time a target analyte is retained on a GC column before elution. The identification of a target analyte is dependent on a target compound's retention time falling within the specified retention time window established for that compound.                                                                                                                                                                                                                                                       |
| Relative retention time                                  | The ratio of the retention time of a compound to that of a standard.                                                                                                                                                                                                                                                                                                                                                                                                                                   |

# Attachment 4 Concentration Trend Graphs

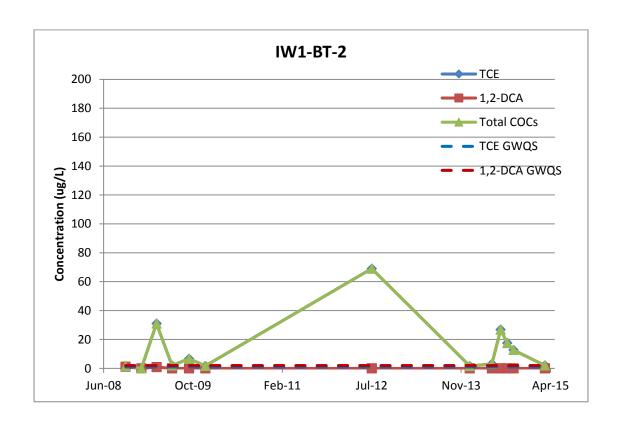

## **ISCO Treatment Area 1 Wells**



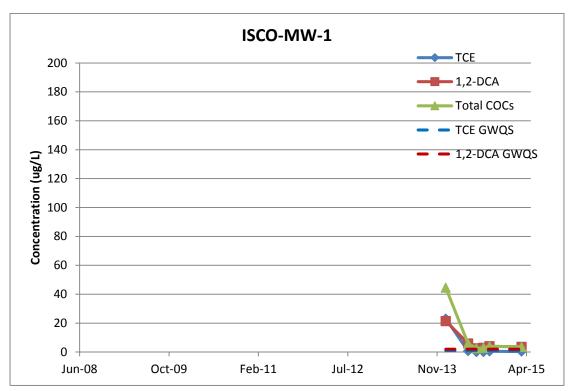


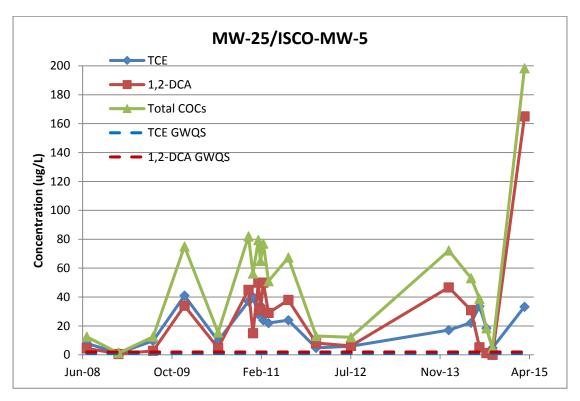



Note: ISCO-MW-7 was installed to replace former well MW-4SR on December 23, 2013, in accordance with the approved RDR/RAWP.



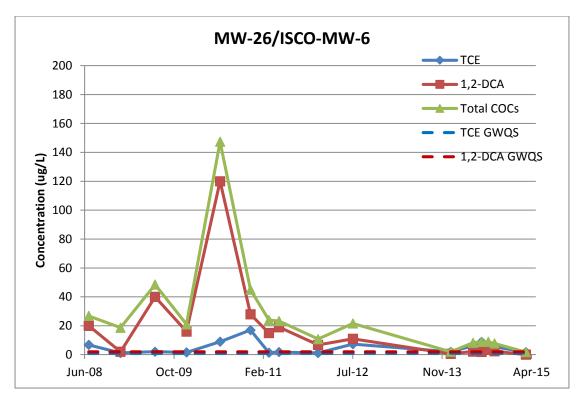

Note: ISCO-MW-8 was installed to replace former well IW-3 on November 27, 2013, in accordance with the approved RDR/RAWP.



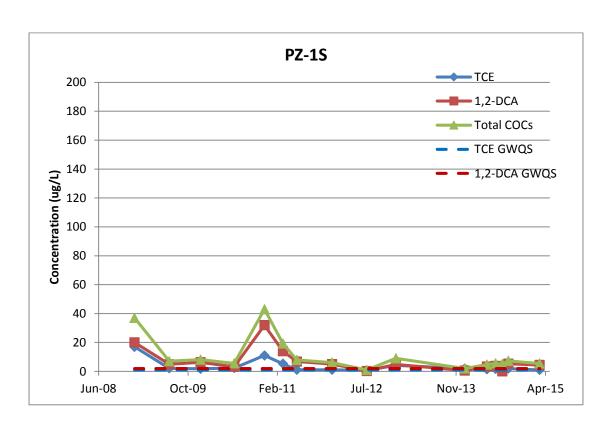




Note: ISCO-MW-9 was installed to replace former well MW-27 on December 23, 2013, in accordance with the approved RDR/RAWP.



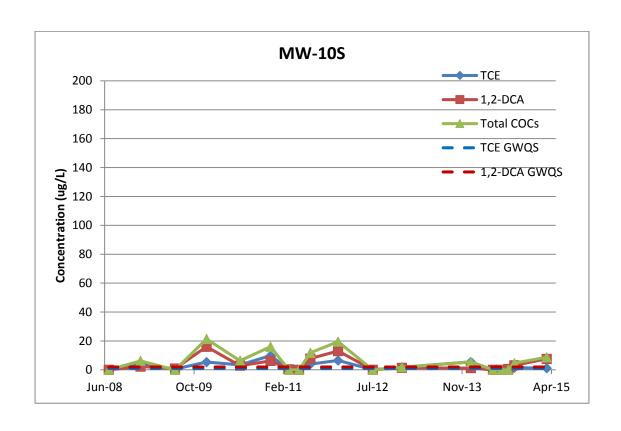

### **ISCO Treatment Area 2 Wells**

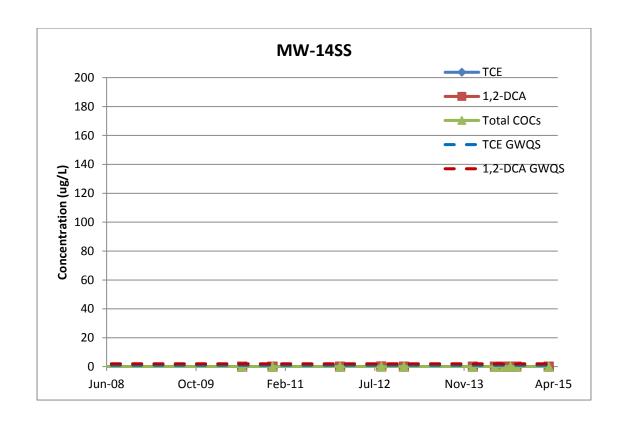


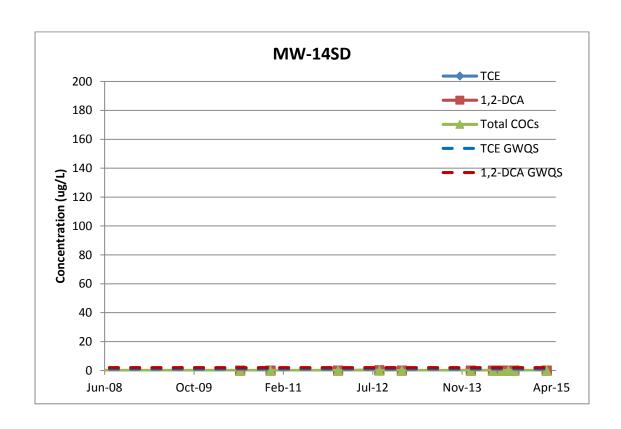



 $Note: ISCO-MW-5 \ was \ installed \ to \ replace \ former \ well \ MW-25 \ on \ November \ 26, 2013, in \ accordance \ with \ the \ approved \ RDR/RAWP.$ 

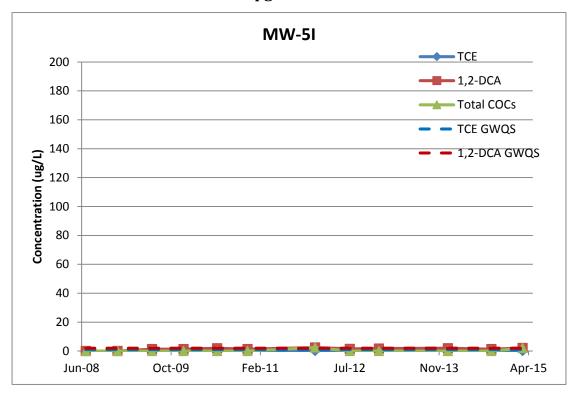


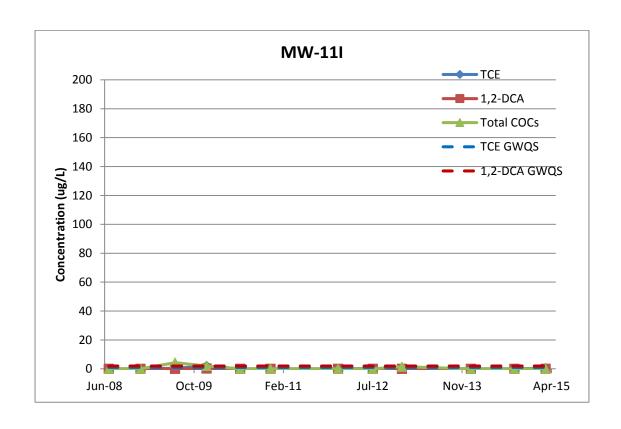


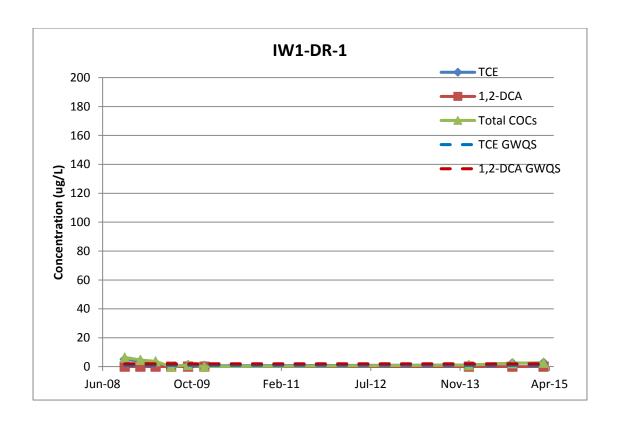


Note: ISCO-MW-6 was installed to replace former well MW-26 on November 27, 2013, in accordance with the approved RDR/RAWP.



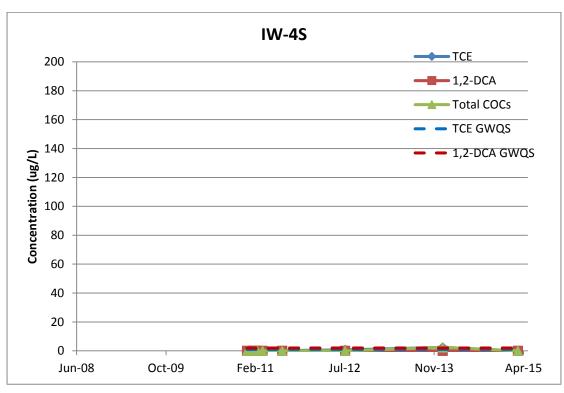

# **ISCO Downgradient Wells**

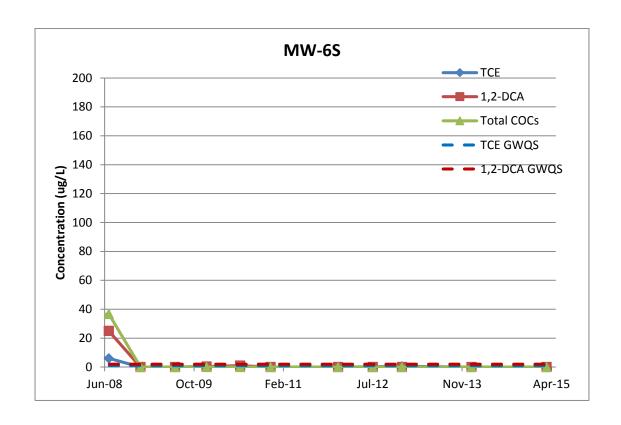


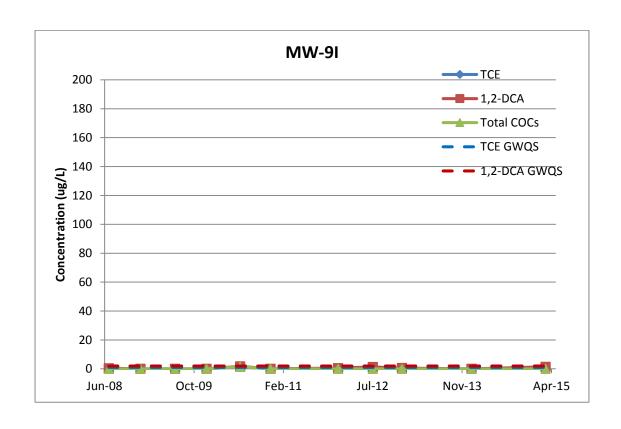



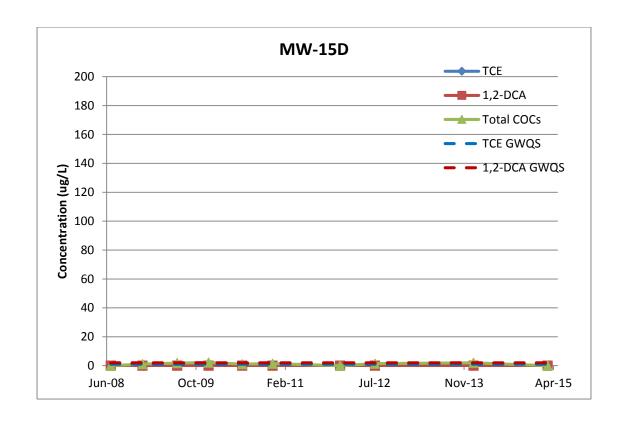



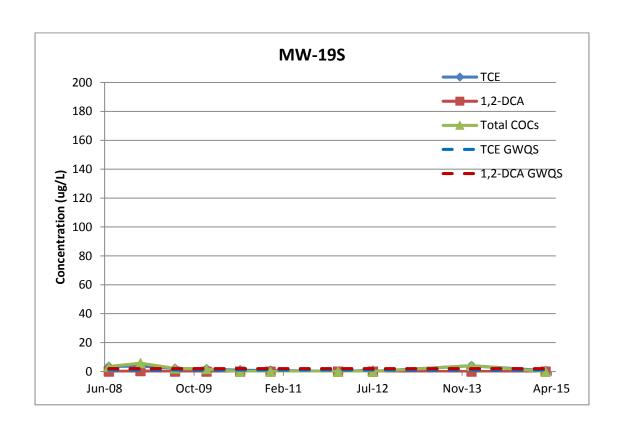


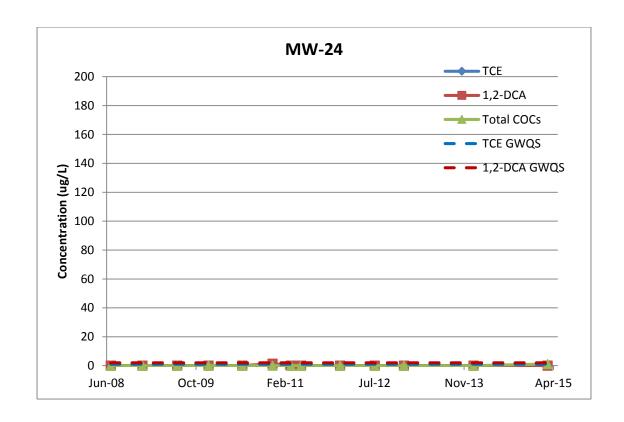


# **ISCO Upgradient Wells**

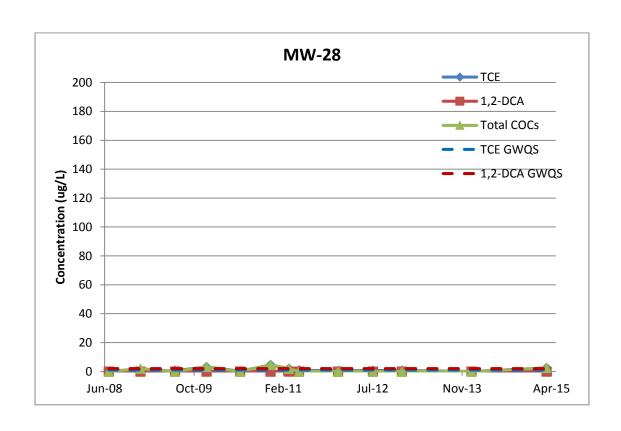


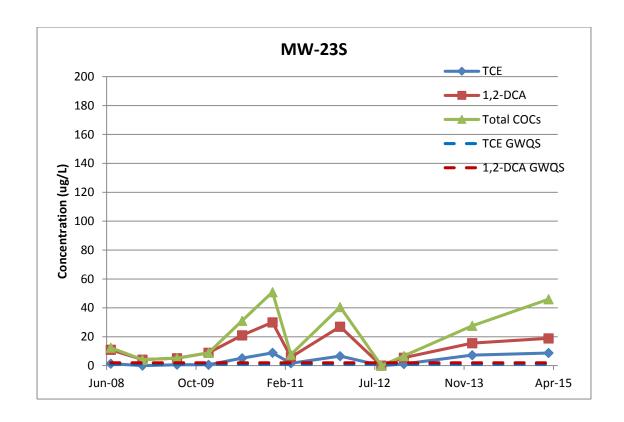



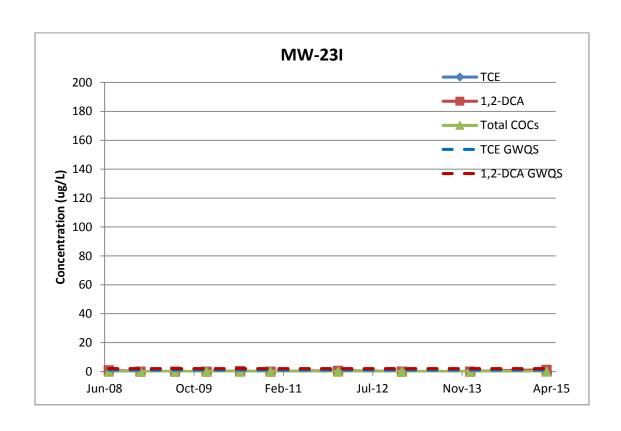



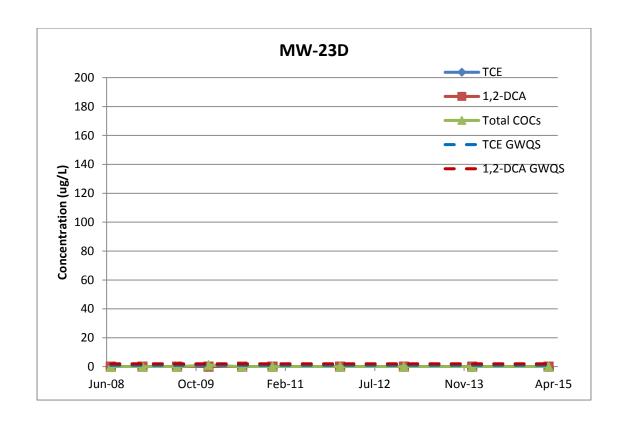


### Other

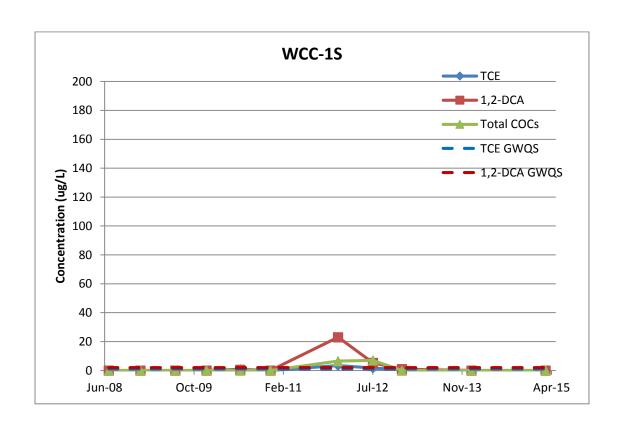


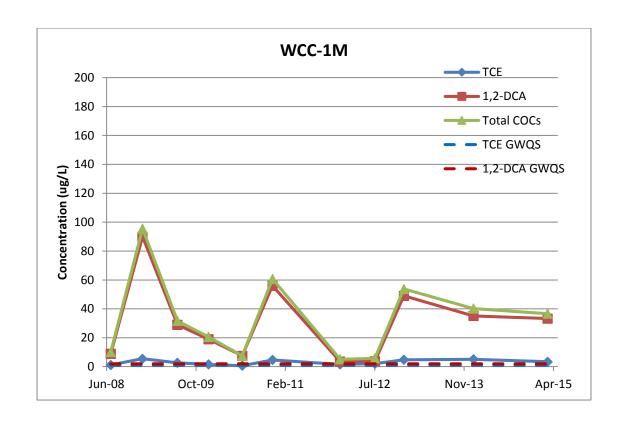



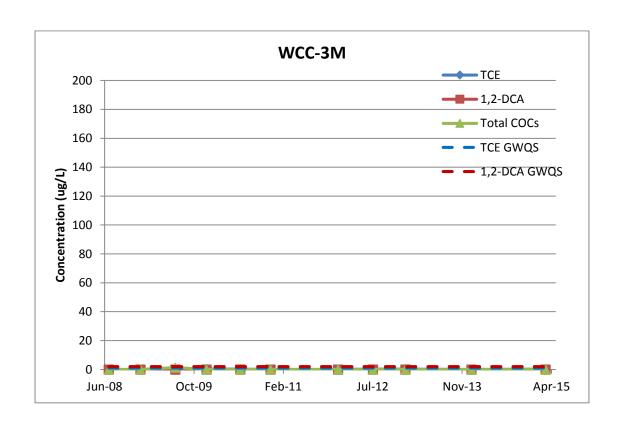



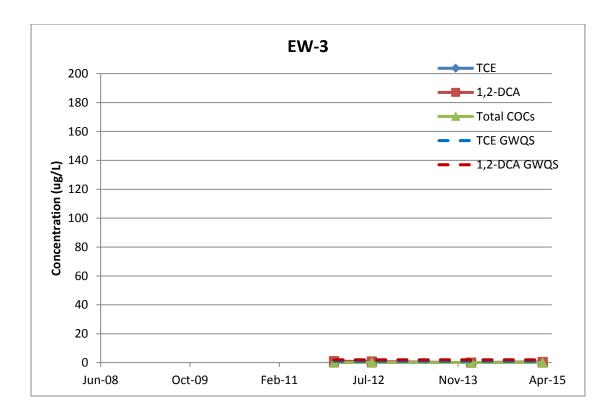














\*Total COCs represents the sum of those groundwater constituents above their respective New Jersey Groundwater Quality Standard (NJGWQS)